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Creep motion of a solidification front in a two-dimensional binary alloy

X. Feng, E. A. Brener, D. E. Temkin, Y. Saito,* and H. Müller-Krumbhaar
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 14 July 1998!

The propagation of a solidification front in a two-dimensional binary alloy is studied by Monte Carlo
simulations. A random atomic configuration is quenched and the atoms that prefer to be in the liquid phase act
as quenched pinning centers to the advancing solidification front. For a system with large kink formation
energye and finite system widthN, we show that the liquidus and solidus lines in the equilibrium phase
diagram correspond to pinning-depinning transition lines, like in a one-dimensional system. In the one-phase
region the front is depinned and propagates steadily, whereas in the two-phase region it is pinned and the
velocity v decays as timet passes with a power-law behaviorv(t);tn21, with n,1. For a moderatee or for
a large widthN, the pinning transition is smeared out and the front propagates steadily even in the two-phase
region by thermal creep. When the driving forceH is small, the velocityv decays exponentially withe and
H21. The size dependence is interpreted in terms of the height correlation.@S1063-651X~99!06601-5#

PACS number~s!: 05.60.Cd, 66.30.Dn, 05.40.1j
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I. INTRODUCTION

Interface motion in random media is observed in vario
disciplines of physics: random magnets, charge den
waves, steps on crystal surfaces, to name just a few
amples. It can be generalized to elastic manifolds such
polymers, vortices in superconductors, etc. In these syste
quenched randomness pins the motion of the interface an
absolute zero temperature a sharp pinning-depinning tra
tion takes place at a finite strength of an external driv
force. At a finite temperature, however, the pinning transit
is smeared out by the creep motion of the interface.

In this paper we study the creep motion of a on
dimensional solidification front in a binary alloy system
two dimensions. The simpler problem of a one-dimensio
~1D! system with a zero-dimensional interface has been s
ied by Temkin and co-workers@1–4#. The atomic configura-
tion throughout the whole system is frozen and the sys
evolves only by the motion of the solid-liquid interface@5#.
For this diffusionless model, the equilibrium phase diagr
in the phase space of concentration and temperature is fo
to determine the critical pinning. In a one-phase region,
interface moves steadily and in the two-phase region
steady velocity vanishes. Atomic clusters which prefer
remain in the liquid state act as quenched obstacles to hi
the propagation of the solidification front. This on
dimensional system is found to be equivalent to a rand
hopping model with a power-law distribution of waitin
times for interface jumps@6–12#. In the two-phase region th
interface positionh(t) shows an anomalous time dependen
as a power-law behaviorh(t);tn with an exponentn,1
which depends on both the temperature and the conce
tion of the alloy.

In the present work we study the same system but in
dimensions. In the two-dimensional~2D! system the 1D in-
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terface extends in the direction normal to its propagat
direction. Then a new degree of freedom comes into pl
The interface tension tries to keep the interface straight
counteracts the roughening effect by thermal fluctuations
by the quenched randomness. We shall find that the ela
restoring effect due to the interface tension leads to corr
tions along the interface, but the correlation length gro
very slowly with time. For a system with a finite size and
large restoring force, the correlation eventually catches u
the system size and then the interface in the 2D sys
shows the same asymptotic dynamics as the 1D sys
However, for a large system with a small restoring force,
interface propagates steadily even in the two-phase reg
An absence of critical pinning in a large 2D syste
was already shown qualitatively in a Monte Carlo study
Jacksonet al. @14#. Here we study the front propagation i
the two-phase region more systematically. It is found to
governed by thermal creep@15#, furthermore the steady
state velocity v depends on the driving forceH as
v}exp(2H21). The result can be analyzed in terms of t
random field Ising~RFI! model @16# or in terms of driven
elastic manifolds@17,18#.

The structure of our paper is as follows. In Sec. II, w
briefly summarize the main results on a 1D model of
interface moving with random jump probabilities. When th
are chosen to reproduce a typical two-component phase
gram of an ideal solution, a pinning-depinning transiti
takes place at the solid-liquid phase boundary. Steady cry
growth occurs in the solid one-phase region, steady mel
in the liquid one-phase region, but nonsteady behavior
curs in the two-phase region. In Sec. III the model is e
tended to two dimensions where the energy cost for the
terface deformation is taken into account. Practically
restrict our investigations to models of solid-on-solid~SOS!
type, where overhangs on the interface are not allowed
particular, we also show that the model can be mapped
random-field Ising~RFI! model with temperature-depende
random fields. The different behavior of the system ins
and outside the two-phase coexistence region is emphas
,
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PRE 59 513CREEP MOTION OF A SOLIDIFICATION FRONT INA . . .
In Sec. IV we consider the limit of large bond energies su
that the interface between solid and liquid tends to stay v
flat on the scale of atomic distances. In this limit we sh
analytically that the 2D system behaves in many respects
a 1D counterpart with a zero-dimensional interface: T
phase boundaries correspond to the pinning-depinning t
sition lines, and the average interface position in the tw
phase region shows an anomalous power-law time de
dence with exactly the same exponent as in the 1D sys
The result is confirmed by detailed MC simulations for t
2D systems with small sizes and large bond energies in
V. But the simulations there also show that a system with
infinite width ~i.e., in the limit of infinite length of the one
dimensional interface! always settles to a motion of a con
stant velocity. Even inside the two-phase region, such
infinite system is not pinned but moves at a slow creep
velocity. This creep motion is analyzed in terms of a R
model, and our numerical results~Secs. V D and V E! con-
firm quantitatively the analytical estimates of the depende
of the creep velocity upon the driving force and the bo
energy. The development of the correlation along the in
face explains the finite size and the finite time effects
served in the asymptotic behavior of small systems. Sec
VI summarizes and concludes our study. Exact but leng
formulas of transition probabilities and velocities for syste
with finite widths and large bond energies are summarize
the Appendix.

II. SUMMARY OF ONE-DIMENSIONAL RESULTS

Before we start the study of the 2D system, it is useful
later comparison to briefly summarize the 1D result. T
microscopic model originally proposed by Temkin@1–3# is
as follows: On a one-dimensional lattice two species of
oms,A andB, are distributed uniformly with the concentra
tion c of B species. This atomic chain is separated by
solid-liquid interface into two parts: the liquid in the upp
part and the solid in the lower, for example. The atom
configuration is frozen and atoms cannot move. They
only change their state between the solid and the liquid.v1A
andv2A denote the solidification and melting frequency f
anA atom~or probability of phase change per time unit!, and

FIG. 1. Equilibrium phase diagram.
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v1B and v2B denote those for aB atom. The ratio of the
probability that an atomX (5A or B! is in the solid state
over that for it being in the liquid state is then determin
kinetically byv2X /v1X and this ratio should be equal to th
one given thermodynamically ase2DmX /T, whereDmX is the
chemical potential difference of an atomX between the liq-
uid and solid states. Here and thereafter the temperatureT is
measured in units of energy. The transition frequenc
should then satisfy the relationv2X /v1X5e2DmX /T. At a
temperatureT near the equilibrium melting temperatureTX
of anX (5A or B! atom, the chemical potential difference
approximately written asDmX5(LX /TX)(TX2T) with the
specific latent heatLX . For the mixture ofA andB atoms, an
ideal solution without mixing energy but with a mixing en
tropy is assumed. Then the equilibrium phase diagram
obtained with the solidusCs(T) and the liquidusCl(T) lines
as

Cs~T!5
12e2DmA /T

e2DmB /T2e2DmA /T
,

~1!

Cl~T!5
~12e2DmA /T!e2DmB /T

e2DmB /T2e2DmA /T
,

as is shown in Fig. 1.
In the diffusionless phase transition considered here,

solidification proceeds via the propagation of a single so
liquid interface over a frozen configuration ofA andB atoms.
Although each atom has fixed probability to solidify or me
the solidification and melting take place only at the interfa
position. In other words, we exclude the possibility of nuc
ation of the energetically favorable phase in positions aw
from the solid-liquid interface. The theoretical analysis
Temkin @1–3# revealed that a steady-state motion of the
terface is possible in one-phase regions, but in the two-ph
region the average velocity of the interface advancem
vanishes with time. In a one-phase region the mean displ
ment ^h(t)& of the interface is linear in timet as

^h~ t !&5v1t ~c,Cs!,
~2!

^h~ t !&52v2t ~c.Cl !,

with the velocities

v15S 12 K v2

v1
L D Y K 1

v1
L

5H 12F ~12c!
v2A

v1A
1c

v2B

v1B
G J F12c

v1A
1

c

v1B
G21

,

~3!

v25S 12 K v1

v2
L D Y K 1

v2
L

5H 12F ~12c!
v1A

v2A
1c

v1B

v2B
G J F12c

v1A
1

c

v1B
G21

.



.
f

t

go
t

th
a

on
y
a’
po

a

t
a
t
it

s

d
d,
a
n
t
n

io
fu
th
f
s

thus
ken

tudy
the

sto-
m is
bor-
ding

se,
en-
d
-
ure

r-

t
this

514 PRE 59X. FENG et al.
Here v1 (5v1A or v1B) refers to the solidification fre-
quency andv2 (5v2A or v2B) to the melting frequency
The angular brackets denote the ensemble average o
quantity within the brackets.

The fact that at Cs and at Cl the averagesS1

5^v2 /v1& andS25^v1 /v2& are equal to unity and tha
at these concentrations the velocitiesv1 andv2 vanish, re-
spectively, reveals that the phase boundariesCs andCl rep-
resent the critical concentrations where the system under
a phase transition between the pinning and depinning sta
In the two-phase coexistence regionCs,c,Cl , the mean
displacement is no longer linear in time. For example,
positionh(t) of the solidification front instead advances as
power law ^h(t)&;tn1 in the concentration rangeCs,c
,C0 with

C0~T!5
ln~v1A /v2A!

ln~v1Av2B /v2Av1B!
. ~4!

Here the exponentn1 is less than unity and decreases
leaving the phase boundaryCs : The steady-state velocit
vanishes in the two-phase region. According to Derrid
@7,8# general treatment of the 1D hopping model, the ex
nentn1 is determined from the relation

K S v2

v1
D n1L 51. ~5!

In the present case, this equation can be written explicitly

~12c!S v2A

v1A
D n1

1cS v2B

v1B
D n1

51. ~6!

At c5C0 ,

^ ln~v2 /v1!&50 ~7!

and n150. The Monte Carlo simulation@4# gives good
agreement with the theory.

For a 1D system accordingly the phase boundary a
finite temperature corresponds to the pinning-depinning tr
sition line. The natural question is whether this statemen
still valid even in the 2D system. We address the similar
and the difference in the two systems in this paper.

III. TWO-DIMENSIONAL MODEL

The 2D kinetic model for a diffusionless alloy growth wa
also introduced by Temkin@13#. A simple square lattice is
randomly occupied byA andB atoms and it is decompose
into two parts by a solid-liquid interface, liquid above soli
for example. The solidification or melting takes place only
this interface: Only those atoms which have both solid a
liquid nearest neighbors have the possibility to transform
the other phase. In the study reported here, atoms are
allowed to change their positions. The atomic configurat
is quenched. Solidification therefore proceeds via a ‘‘dif
sionless’’ transformation. For simplicity we assume that
cohesive energies act between nearest-neighbor atoms o
same phase but they do not depend on the type of atom

eAA
b 5eAB

b 5eBB
b 5eb ~b5s,l !. ~8!
the

es
es.

e
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Here the superscriptss and l refer to the solid and liquid
state, respectively. Since the mixing energy

eAB
b 2

eAA
b 1eBB

b

2
~9!

is zero, both phases are ideal solutions. The interface
corresponds to the place where the atomic cohesion is bro
and each broken bond depletes interface energy. We s
the effect of the interface energy on the dynamics of
alloy solidification.

The phase transformation is assumed to take place
chastically at the interface. The phase change of an ato
associated with the breaking of cohesion of nearest neigh
ing atoms in the same phase that depletes energy. Depen
on the process~freezing or melting! and on the numberj
~51,2,3! of nearest-neighboring atoms in the same pha
there are 12 transition frequencies: six solidification frequ
cies denoted asv1X( j ) and six melting frequencies denote
by v2X( j ). HereX refers to theA or B atom. These frequen
cies should satisfy the detailed balance condition to ens
the equilibrium phase diagram as

v1X~ j !5v1Xexp@2~ j 22!e l /T#,
~10!

v2X~ j !5v2Xexp@2~ j 22!es /T#.

The transition frequenciesv6X of componentX at the kink
position (j 52) are related to the chemical potential diffe
enceDmX between two phases as

v1X

v2X
5expS DmX

T D ~11!

with

DmX5mX
l 2mX

s >LX

TX2T

TX
. ~12!

The solidusCs(T) and the liquidus linesCl(T) obey the
detailed balance principle in the form

~12Cs!v2A5~12Cl !v1A ,
~13!

Csv2B5Clv1B ,

and they are obtained as in Eq.~1!.
There exists a special concentrationC0 where the free

energyfs per solid atom is equal to the free energyf l per
liquid atom,

fs[~12C0!mA
s ~T!1C0mB

s ~T!

5f l[~12C0!mA
l ~T!1C0mB

l ~T! ~14!

or

~12C0!DmA1C0DmB50. ~15!

From Eqs.~11! and ~15!, we obtainC0 as in Eq.~4!. Equa-
tion ~15! is equivalent to Eq.~7! and we shall see later tha
the interface velocity of a large 2D system vanishes at
concentrationC0 .
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The phase diagram with coexistence linesCs(T) and
Cl(T) as well as the special lineC0(T) is depicted in Fig. 1
with the following set of parameter values:TA50.9, TB
50.1, LA /TA5LB /TB51. It is seen that the solidification o
melting of the system depends not only upon the cool
condition but also on the alloy composition. At a fixed tem
peratureT betweenTA and TB , the system remains in th
solid state as long as the concentrationc is smaller than
Cs(T). Whenc comes to lie betweenCs(T) andCl(T), the
solid and liquid phase coexist, but whenc becomes larger
thanCl(T) the system melts completely.

The above 2D growth model can be mapped onto
random-field Ising~RFI! model. The RFI model is define
by spins with two possible valuessi561 that are placed on
site i of a lattice. Its Hamiltonian is given by

H[2J(
^ i , j &

sisj2(
i

~ f i1 f̄ ! si . ~16!

Here si511 represents the solid state,si521 represents
the liquid state, (^ i , j & denotes the summation over a
nearest-neighbor pairs^ i , j &, and( i is the sum over all spins
in the system.J is the exchange energy between the fer
magnetically coupled nearest-neighbor spins and determ
by the bond energies as

J5
1

4
~es1e l !. ~17!

f̄ is the external uniform driving force which is proportion
to the concentration difference (C02c). f i is the quenched
local field caused by the concentration fluctuation from
average concentrationc of the B atoms. Since each lattic
site i is occupied by either anA atom with the probability
(12c) ~the average concentration ofA atoms! or a B atom
with the probabilityc ~the average concentration ofB at-
oms!, the probability distribution of the quantity (f i1 f̄ ) is

r ~ f i1 f̄ !5~12c!d~ f i1 f̄ 2 f A!1c d~ f i1 f̄ 2 f B!. ~18!

Here f A and f B depend on the temperature and the latent h
and are defined as

f A~T!52
1

2
DmA52

1

2
LAS 12

T

TA
D ,

~19!

f B~T!52
1

2
DmB52

1

2
LBS 12

T

TB
D .

In addition, the driving forcef̄ (T) or the average free energ
gain by solidifying one atom is

f̄ ~T!5~12c! f A~T!1c fB~T!, ~20!

where c is the average concentration ofB atoms. Accord-
ingly, the randomly quenched fieldf i has a zero averag
value

^ f i&50. ~21!

Here the angular brackets represent the average over the
ferent realization of randomness.f i is then assumed uncor
g
-

e

-
ed

e

at

if-

related for different sites. It may be worthwhile to note th
the two-dimensional case corresponds to the lower crit
dimension of the RFI model@19#.

IV. DIFFUSIONLESS GROWTH AT LARGE
BOND ENERGY

In this section we show analytically that for large bon
energies a two-dimensional growth system with finite wid
N will be equivalent to a one-dimensional system. This ty
of behavior is well known to occur in critical phenomena
equilibrium statistical mechanics. We consider the alloy
lidification starting from a flat interface configuration. Th
solidification is initiated by the formation of a nucleus co
sisting of a single atom with two kinks sitting on a flat on
dimensional interface. If the kink formation energye l is
large, this nucleation process is very slow compared to
lateral growth of the island afterwards. The solidificatio
proceeds layer-by-layer by the single nucleation and gro
mechanism and the probability of multilayers and multin
clei processes is negligibly small: Once a cluster appear
soon spreads laterally until the whole layer is filled. If th
bond energyes is large, the melting also proceeds by a laye
by-layer mechanism. In these cases the advancement of
interface by one layer to the neighboring layer position m
be considered as a single ‘‘elementary’’ action. Then o
may construct an effective 1D model where the ‘‘eleme
tary’’ transition frequenciesV6 of a ‘‘layer’’ jumping for-
ward (1) and backward (2) play the same role asv6 play
in a real 1D system. In reality these ‘‘elementary’’ jump
consist of many atomic solidification-melting subprocess
We can calculate the elementary frequenciesV6 in terms of
atomic frequenciesv6 . From the analysis, we shall find th
remarkable result that the exponentn obeys the same relatio
~5! as in the 1D system. This result will be tested by t
Monte Carlo simulation in the next section.

First consider the situation when the layer has just b
completed and the flat interface is located between the s
layer with an atomic arrangement$Xs%5$X1

s ,X2
s , . . . ,XN

s %
and the liquid layer above with an arrangement$Xl%
5$X1

l ,X2
l , . . . ,XN

l %. HereXs,l denoteA or B atoms andi
(51,2, . . . ,N) denotes the column number in the squa
lattice. The solidification, for instance, starts by the nuc
ation at a sitei in the liquid layer. The solid nucleus grows t
the right or to the left, but can also melt back. Finally t
layer is completed by the solidification at the last sitef . Here
we call the sequence of events starting from the sitei and
ending at the sitef a ‘‘trajectory.’’ After an average waiting
time Y, the interface has moved one layer forward with
probability P or one layer backward with a probabilityQ,
where P1Q51 obviously. Then the transition frequencie
of layer jump are given by

V15P/Y and V25Q/Y. ~22!

The forward transition probabilityP obeys the following
recursive equation, with definitions given afterwards:

P5(
i 51

N

pi Pi1P(
i 51

N

@pi~12Pi !1qi~12Qi !#. ~23!

Here
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pi5
v1 i~3!

(
i 51

N

v1 i~3!1(
j 51

N

v2 j~3!

[v1 i~3!t ~24!

is the probability that a solid island first nucleates at the
i on the initial flat interface. Similarly

qi5v2 i~3!t ~25!

gives the probability of the first melting of a solid layer at t
i th site. We introduced the abbreviated notationv6 i for
v6X

i
l. t represents the mean waiting time before the fi

solid or liquid nucleus is created on the flat interface.
In Eq. ~23!, Pi represents the probability that the sol

cluster which started from the sitei completely covers the
interface without being remelted before finishing the cov
age, so that the interface never comes back to the initial
configuration during the solidification process. SimilarlyQi
defines the probability that the liquid cluster started from
site i completely melts the interface layer without being co
pletely resolidified to the original interface configuration.

Therefore the first term on the right-hand side~RHS! of
Eq. ~23! represents the contribution from all the possib
trajectories which never come back to the initial flat interfa
during the solidification process. The second term gives
contribution from those trajectories which lead to the init
interface configuration during solidification. Those started
solidification but remelted have a probabilitypi(12Pi) to
return to the original interface configuration, and tho
started by melting and resolidified have a probabil
qi(12Qi). Afterwards the interface has the same probabi
P to be solidified. Equation~23! has a solution

P5

(
i 51

N

pi Pi

(
i 51

N

@pi Pi1qiQi #

. ~26!

Obviously Q512P. In the same spirit we can derive th
equation for the average waiting timeY:

Y5t(
i 51

N

@pi Pi1qiQi #1~t1Y!

3(
i 51

N

@pi~12Pi !1qi~12Qi !#. ~27!

Equation~27! is approximate because we take into acco
only a single nucleation and growth during the interface e
lution.

It has the solution

Y5
t

(
i 51

N

@pi Pi1qiQi #

. ~28!

Now we obtain the desired transition frequencies:
e

t

-
at

e
-

e
e

l
y

e

y

t
-

V15
1

t (
i 51

N

pi Pi5(
i 51

N

v1 i~3!Pi ,

~29!

V25(
i 51

N

v2 i~3!Qi .

The important feature of the obtained result, Eq.~29!, is that
in the used approximation the frequency of solidificatio
V1 , depends only on the atomic configuration of the soli
fying liquid layer above the interface. Similarly the meltin
frequencyV2 depends only on the atomic configuration
the melting solid layer at the interface.

In terms of the introduced frequenciesV6 , we can write
down some important characteristics using the known
results. The solidification velocityv1 and the melting veloc-
ity v2 are given as

v151F12 K V2

V1
L G Y K 1

V1
L ,

~30!

v252F12 K V1

V2
L G Y K 1

V2
L .

Here^¯& means the average over all possible configurati
in the layer, for example,

K V2

V1
L 5 (

X15A,B
¯ (

XN5A,B

V2~X1¯XN!

V1~X1¯XN! )
i 51

N

ci , ~31!

where ) i 51
N ci ~with ci5c for Xi5B and ci512c for Xi

5A) is the probability of finding the configuration
$Xi¯XN%. These steady-state velocities,v1 andv2 , vanish
under the following conditions:

^V2 /V1&51 and ^V1 /V2&51, ~32!

respectively. In the region where steady-state motion of
interface is impossible, the mean displacement^h(t)& shows
a power-law behavior̂ h1(t)&;tn1 and ^h2(t)&;2tn2

with the exponentsn1 andn2 determined from the relation

^~V2 /V1!n1&51 and ^~V1 /V2!n2&51. ~33!

At the point where

^ ln~V2 /V1!&50, ~34!

the mean displacement vanishes,^h1(t)&5^h2(t)&50, and
n15n250. Note that in accord with the 1D results@1–3#,
the frequenciesV2 and V1 in Eqs. ~30!–~34! should be
taken for the same layer.

In order to evaluate the elementary layer-jump frequ
cies of Eq.~22!, we need the probabilitiesPi andQi in Eq.
~29!. ForPi with i 51,2, . . . ,N, one can write the following
set of equations:
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Pi5
1

Wi ,i
$v1~ i 21!Pi 21,i1v1~ i 11!Pi ,i 11%,

Pi , . . . ,i 1n5
1

Wi ,i 1n
$v2 i Pi 11, . . . ,i 1n

1v2~ i 1n!Pi , . . . ,i 1n211v1~ i 21!

3Pi 21, . . . ,i 1n1v1~ i 1n11!

3Pi , . . . ,i 1n11%, ~35!

Pi , . . . ,i 1N225
1

Wi ,i 1N22
$v2 i Pi 11, . . . ,i 1N22

1v2~ i 1N22!Pi , . . . ,i 1N23

1v1~ i 1N21!~1!%.

The Qi ’s obey completely analogous equations apart fr
index changes, but an explicit evaluation can be circu
vented as shown in the Appendix. Here nown51, . . . ,N
23 and Pi , . . . ,i 1n is the probability that the solid cluste
with (n11) particles which occupies the sites fromi to
( i 1n) finally fills the layer ofN atoms without being com
pletely remelted. The denominators are the total rate of p
sible events for the nucleus occupying the sitesi to i 1n,

Wi ,i5v2 i~1!1v1~ i 21!1v1~ i 11! ,

Wi ,i 1n5v2 i1v2~ i 1n!1v1~ i 21!1v1~ i 1n11! , ~36!

Wi ,i 1N225v2 i1v2~ i 1N22!1v1~ i 1N21!~1!.

We consider Eqs.~35! and~36! with periodic boundary con-
ditions. Namely, v6(k1N)5v6k , and a cluster which
reaches a boundary of the layer can continue to grow fr
the other side of the layer.

For a given configuration ofA-B atoms in the layer, one
can solve the linear equations~35! numerically. A closed
analytical form of the solution is obtained forN52,3,4 and
is summarized in the Appendix. The remarkable result fou
in the analysis is the relation

V2

V1
5)

i 51

N S v2 i

v1 i
D ~37!

for N52,3,4. So far this result has been explicitly show
only for systems with finite sizesN52,3,4, but it can be
extended to an arbitrarily largeN by a plausible argument. I
is clear that each trajectory which gives a contribution toV1

has the common factor) i 51
N v1 i , because all atoms in th

liquid layer have to be solidified at least once. An expon
tial factor contained at the initiation of a solid nucleu
v11(3)5v11exp(2el /T), is compensated for by the facto
at the end:v1N(1)5v1Nexp(el /T). Index ‘‘1’’ here simply
is the place where the nucleation of the new layer has sta
Additional melting and resolidification at the sitej in the
intermediate stage introduces a factorv2 jv1 j . Thus we can
formally write V1 as a sum over all possible trajectories,
-

s-

m

d

-
,

d.

V15S )
i 51

N

v1 i D(
k

f 1k~$v2 jv1 j%,Wn,m!, ~38!

where the functionf 1k describes the contribution from th
1kth trajectory.Wn,m is given in Eq.~36!. A similar formal
expression can be written forV2 for the same layer:

V25S )
i 51

N

v2 i D(
k

f 2k~$v1 jv2 j%,Wn,m!. ~39!

We cannot calculate the trajectory sum in the general c
but we can show that(kf 1k5(kf 2k . For each1kth trajec-
tory there exists a2kth trajectory with precisely the oppo
site sequence of elementary events, like a film running f
ward for the1kth trajectory and backward for the2kth one.
Through this one-to-one correspondence between traje
ries, one getsf 1k5 f 2k and the relation Eq.~37!.

From the property, Eq.~37!, that the ratioV2 /V1 is just
the product of the ratios of the frequenciesv2 i /v1 i , we can
now derive that the 2D system with largees behaves simi-
larly to the pure 1D system. The average of the ratio redu
to

K V2

V1
L 5S1

N ~40!

with

S15 K v2 i

v1 i
L 5~12c!

v2A

v1A
1c

v2B

v1B
. ~41!

From Eq.~30! the growth ratev1 then vanishes atS151.
This is precisely the same condition for the absence of ste
growth in the 1D system Eq.~3!, and it corresponds to the
solidus line on the phase diagram. Moreover, Eq.~33! for the
exponentn1 has the form

F ~12c!S v2A

v1A
D n1

1cS v2B

v1B
D n1GN

51 ~42!

and gives the same exponentn1 as for the 1D system@see
Eq. ~6!#. All these results obtained for the solidification fro
can be easily converted into the melting front just by e
changing the indices1 and 2. For example, the melting
velocity v2 vanishes at the concentration

S2[~12c!
v1A

v2A
1c

v1B

v2B
51. ~43!

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Implementation of the algorithm

For the analysis of the 2D alloy solidification with gener
values of bond energies and arbitrary system sizeN, we per-
form Monte Carlo~MC! simulations of a lattice model. On
square lattice withN columns andM rows, A and B atoms
are distributed randomly with a mean concentrationc of the
B component. Each atom can be in either a solid or a liq
state. We use the solid-on-solid~SOS! model such that the
liquid phase stays above the solid phase: Overhangs are
bidden at the interface. Then, an interface configuration



t
d

e.

o
r-
s

s

in

d

o

t
a
e

ti
es
of

m
f
it
th
m
r

ibu

m
r
r

se

her

-

to
as

n
is
ent
ase

cal
.

al

e.

-
it

t the
t the

olid

n-

518 PRE 59X. FENG et al.
defined as the set of heights of the solid phase$hi% for col-
umns i 51 to N. Initially an interface is flat at a heigh
hi(t50)5h(0) for all the columns. Each row is assume
periodic and both ends of each column are assumed fre

For the motion of the interface, only2N atoms contingent
to the interface are involved. Let us denote the interface c
figuration as$hi%, the solid-atom arrangement at the inte
face as $Xs(hi)%, and the liquid-atom arrangement a
$Xl(hi11)%. The melting rate of a solid atom on thei th
column depends on the numberj i of neighboring solid atoms
as v2 i[v2Xs(hi )

( j i) and the solidification rate of a liquid

atom above the interface depends on the numberj i8 of neigh-
boring liquid atoms asv1 i[v1Xl (hi11)( j i8). Then, during
the time interval

Dt51YS (
i 51

N

v1 i1(
i 51

N

v2 i D , ~44!

an atom in thei th column in the liquid or solid layer change
its state with the transition probability

P6~ i !5v6 iDt, ~45!

where i 51, . . . ,N. Here1 ~2! refers to the solidification
~melting! of the atom at the heighthi11 (hi). Since the
probability~45! is normalized, some event takes place with
the time intervalDt. Therefore, our simulation algorithm
runs as follows. Pick up a random number between 0 an
If it falls in the interval between (n51

i 21 P1(n) and
(n51

i P1(n), then the liquid atom at the site (i ,hi11)
solidifies and the interface height increases. If the rand
number falls in the interval between(n51

N P1(n)
1(n51

i 21 P2(n) and (n51
N P1(n)1(n51

i P2(n), then the
solid atom at the site (i ,hi) melts and the interface heigh
decreases. After each configuration change the time incre
by Dt. The mean displacement of the interface at the timt
is defined as

^h~ t !&5
1

N (
i 51

N

^hi~ t !&2h~0!, ~46!

where ^¯& represents the sample average andh(0) is the
initial position of the interface. Averages of physical quan
ties have been taken from 50 to 150 independent sampl

With the present algorithm, we reproduced the results
1D diffusionless solidification obtained previously@4#. In ad-
dition, we simulated a two-column system which is co
posed of one column of pureA atoms and one column o
pureB atoms. For this system we can calculate the veloc
of the interface exactly and the simulation reproduces
exact velocity quite well. For a further check of our progra
the equilibrium distribution of kink height is investigated fo
a 2D single-component system and the Boltzmann distr
tion is confirmed.

B. Large e limit

In Sec. IV we proved that when the bond energieses are
infinitely large and the system width is finite, the 2D syste
has asymptotics equivalent to the 1D system. In orde
check this, we simulate the interface motion of a fou
n-

1.

m

ses

-
.
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-

y
e
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-

to
-

column lattice:N54. The parameters governing the pha
diagram areTA50.9, TB50.1, andLA /TA5LB /TB51. The
correspondent phase diagram is shown in Fig. 1. Ot
parameters are chosen ases /TA5e l /TA53.0 andT50.5.
Frequencies are chosen asv2A5v2B51, which defines our
unit time, andv1A51/v1B52.226. The equilibrium con-
centrations at this temperature areCs50.310 and Cl
50.690. By solving Eqs.~11!, ~12!, and~6!, the exponent for
the displacement of the interface is obtained as

n151.25 lnS 12c

c D ~0.31,c,0.50!. ~47!

Since the bond energieses /T5e l /T55.4 are large, the ther
mally excited kink density is small; exp(2el /T) is of the
order of 1023. Then the solid-liquid interface is expected
advance by the single nucleation and growth mechanism
is described in Sec. IV.

The exponentn1 and the velocityv1 obtained by the
simulation are presented as functions of the concentratioc
in Fig. 2 and Fig. 3, respectively. The velocity in Fig. 3
determined from the asymptotic slope of the displacem
versus time and it has a nonzero value even in the two-ph
region. The solid line in Fig. 2 represents the theoreti
behavior Eq.~47!. The solid line in Fig. 3 is the velocity Eq
~A7! obtained theoretically forN54. The deviation of the
exponentn1 obtained by simulation from the theoretic
value near the phase boundaryCs is also observed in a 1D
case@4# and is probably due to the finite simulation tim
Comparing the analytic prediction~solid line! with the simu-
lation results~symbols!, we can conclude that the 2D diffu
sionless crystal growth in the infinite bond energy lim
obeys the same law as the 1D counterpart. It means tha
interface advances steadily in the one-phase region, bu
steady-state velocity vanishes in the two-phase region.

C. The effect of bond energye and system sizeN
on the interface properties

It has been known@13# that the interface of a 2D alloy
system has a steady-state solidification velocity in the s

FIG. 2. Exponentn1 of the mean displacement at various co
centrations ofB atoms for the four-column system:N54. The solid
line represents the theoretical expectation Eq.~47! and the dots
represent the MC results.
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PRE 59 519CREEP MOTION OF A SOLIDIFICATION FRONT INA . . .
phase region (c,Cs) and a steady-state melting velocity
the liquid phase region (c.Cl). Naturally, the basic ques
tion we want to ask is how the interface in the two-pha
coexistence region behaves. There are many paramete
the system, but the ones in the 2D system which are n
compared to the 1D system are the bond energye and the
system sizeN. Therefore, we study the effect of these tw
parameters on the dynamics of the interface. The other
rameter values are kept fixed to reproduce the same equ
rium phase diagram, Fig. 1:TA50.9, TB50.1, LA /TA
5LB /TB51. We choose the concentrationc50.4 and the
temperatureT50.5 such that the corresponding phase po
is located in the two-phase coexistence region with a s
phase favored~see Fig. 1!. Then the choice ofv2A5v2B
51 leads to solidification frequenciesv1A51/v1B52.226
at T50.5. For simplicity, the bond energieses and e l take
always the same value:es5e l5e.

We first study the time dependence of the interface d
placement̂ h(t)& for various system sizesN at a given bond

FIG. 3. Steady-state velocityv1 versus concentrationc for the
four-column system:N54. The solid line represents the theoretic
expectation Eq.~A7!, and the dots represent the MC results.

FIG. 4. Log-log plot of the mean displacement^h(t)& as a func-
tion of time t for various system sizes:N520, 30, 40, 50, 60, and
80 from the bottom to the top. The bond energy ise52.0TA .
e
in

w

a-
ib-
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energye. Averages have been taken over 50 to 150 indep
dent runs. Figure 4 depicts the raw data for six different si
N ranging from 20 to 80 at the fixed bond energye/TA

52.0. The simulation is performed up to the time 106. Ini-
tially the displacementh(t) increases linearly with timet
independent of the system sizeN. For a time longer than the
crossover timetx(N) which depends on the system size, t
system crosses over to a pinned state with the displacem
following a power law ash(t)5atn1b. Up to a simulation
time t5106 we obtain a dynamic exponentn which varies
from around 0.51 to 1 as the system sizeN increases from 25
to 80. The same tendency is also observable for a sys
with a smaller bond energy,e/TA51.5, as is depicted in Fig
5. Here the simulation is performed longer up to the timt
5108. The displacement̂h(t)& clearly shows the crossove
from the steadily moving interface to the pinned growth.

In the simulation, the solidification starts from a straig
interface. As atoms on the interface change their state
tween the liquid and the solid states, the interface gradu
roughens and bumps appear. At the beginning, bumps
small and isolated from each other. Therefore the interf
does not feel the size differences among different syste
and displays a common linear law. However, at a crosso
time when the typical bump size reaches the system size
system is affected strongly by its size. In the long time lim
all systems lose the memory of the size and presen
quasi-1D behavior, which is characterized by the power-l
behavior of the displacement. This scenario will be furth
elucidated later in Sec. V G.

Next we examine the effect of the bond energye on the
dynamic exponentn for a given system sizeN. The ~effec-
tive! exponentn is obtained from the simulation up to th
time t5105– 106. We studied seven systems with sizes ran
ing from 25 to 2000 and the result is summarized in Fig. 6
clearly shows that there is an evident size and bond ene
dependence of the interface dynamics. We can div
the bond energy dependence ofn into four characteristic
regimes~a!, ~b!, ~c!, and~d!—as is exemplified in Fig. 6 for
the system with a sizeN540.

FIG. 5. Log-log plot of the mean displacement^h(t)& as a func-
tion of time t for three system sizes:N510, 25, and 40. The bond
energy ise51.5TA .
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~a! Jump regime. The exponentn increases sharply from
the 1D value, 0.51, to unity in a very short range of ene
from 0 to 0.1TA .

~b! Steady-state velocity regime. For moderate bond
ergies (.0.1TA), the interface moves steadily and its di
placement grows linearly with time; the exponentn is 1. This
is quite a surprise since the interface of a 1D chain g
completely pinned at the concentrationc50.4. The energy
range wheren remains unity varies with the system size. T
larger the system sizeN, the wider the energy range be
comes.

~c! Transit regime. If the bond strengthe exceeds the
critical valueec(N), thenn starts to decrease. We defineec
as the value of the bond energy whenn drops to 0.9. The
critical valueec is found to increase linearly with the syste
sizeN, as is shown in Fig. 7.

~d! Pinned regime. For a strong enough bond energye,
the exponentn eventually approaches the 1D value 0.5

FIG. 6. Dependence of the dynamical exponentn on the bond
energye. Curves from bottom to top correspond to system si
N525, 30, 40, 50, 70, 80, and 2000. Data are obtained from
simulations performed up to the time 106.

FIG. 7. Dependence of critical bond energyec on the system
sizeN.
y

-

ts
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This regime has been studied in detail in Sec. IV and
Appendix theoretically and in Sec. V B by the simulation.

D. Depinning of large systems

In Sec. V C, we have seen that the properties of the
system depend strongly on two parameters: the sizeN and
the bond energye. In the limit of large energy (e→`), the
system loses its 2D features and behaves effectively like
1D counterpart. On the contrary, in the limit of large syste
size (N→`), the crystal grows steadily for the concentr
tions c,C0(T) if e.0.1TA ~see Fig. 6 forN52000). Here
the critical concentrationC0 is defined in Eq.~4! and as-
sumes the value 0.5 atT50.5. In the one-phase region,
<c<Cs , it is found that the steady velocity decreases as
bond energye increases~see Fig. 8!. The ratio of velocities
of two systems with bond energiese1 ande2 is found to be
almost independent of the concentration when the bond
ergy is larger than'TA , while TA is the high-temperature
limit of the two-phase region atc50 ~Fig. 1!. In other
words, the ratio is a function ofe1 and e2 as
v(e1 ,c)/v(e2 ,c)5 f (e1 ,e2). However, for small bond ener
gies the ratio depends also on the concentration. So far
know of no theory on the velocity in the one-phase region
two dimensions.

Our concern hereafter in this section is the growth law
the two-phase region. How does the growth rate depend
the driving forceH}C02c for a very large system in the
two-phase region? Figure 8 shows the simulation results
the velocity of the solidification front as a function of th
driving force H}0.52c for a large system with sizeN
52000. Three different bond energies are considered:e/TA
51.0, 1.5, and 2.0. The simulation has been performed o
once for each parameter set, but statistics are sufficie
good due to the large system size.

Figure 8 clearly shows that the velocity of the front i
creases systematically with the driving forceH. We study
the interface motion under a small driving forceH in the
spirit of a driven elastic manifold@15–18#. Our picture of the
interface motion is as follows. In the absence of an exter
driving forceH50 or c5C050.5, the interface moves unt

s
e

FIG. 8. Dependence of the velocityv on the concentration dif-
ference (0.52c). The system size isN52000 and the bond ener
gies aree51.0TA(1), 1.5TA(3), and 2.0TA(*), respectively.
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it finds a configuration with a local minimum of the energ
whereupon it is pinned. If we drive a system with a nonze
force

H5b~0.52c!, ~48!

the interface tends to move in the direction ofH, but the
pinning force of the impurities tends to block the motio
Here b is a constant. As soon as the pinning force is ov
come by the external forceH and the restoring force gene
ated by the local curvature of the interface, the interfa
begins to move with a finite velocity. For a very small fie
H the motion may not be uniform. At a given instant th
interface may consist of pinned and unpinned regions.
height difference between the pinned and unpinned reg
increases in time, and thus the interface should be rando
corrugated with large amplitudes. Typical interface profi
are shown in Fig. 9. The eye can readily recognize that
roughness increases in time. But once the combined effe
the driving and restoring forces overcomes the pinn
forces in some pinned region, the interface jumps over
pinning sites and begins to move until it is stopped again
another region of strong pinning sites. Thus the interfa
exhibits a slow, smooth motion stopped by pinning. Af
waiting times which are typically long in comparison wi
the time to move from one pinned state to the next,
interface jumps over the pinning center and then moves
continuously until the next stop at a pinning site. The int
face velocityv thus is expected to be inversely proportion
to the waiting timetw for a jump.

We now estimate this waiting timetw . The randomly
quenchedB atom on the sitei corresponds to a pinning cen
ter against the solidification front with a pinning forcef i .
Let us consider the case that the interface has to jump ov
pinning region with an extensionl and a heighth. This re-
gion pins the solidification front because it has moreB atoms
than the expected average value and the liquid phase i
vored with an energy gain;D(hl)1/2. HereD is a prefactor
characterizing the effective strength of the random pinn

FIG. 9. Time evolution of an interface profile of a 2D syste
under a small driving force: 0.52c50.08. The system size isN
52000 and the bond energy ise52.0TA . Note that the vertical and
horizontal scales are different.
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force and is proportional to the quantity^ f i f j&. For the in-
terface to pass over this region, it has to pay the ene
penalty

ur;D~hl !1/2. ~49!

However, the interface deformation depletes surface ene
and therefore the jump gains the surface energy

us;gS h

l D
2

l , ~50!

whereg is the surface tension. If there is a bulk driving forc
H, the solidification of the volumehl leads to the energy
gain

ud;Hhl. ~51!

By assuming that the jump takes place when all the co
peting energies are of the same order asus;ur;ud , the
pinning region to be jumped over has the following chara
teristic length scales:

l;g1/3D2/3/H, h;D4/3/Hg1/3, ~52!

and the characteristic energy

u5dD2/H, ~53!

whered is some constant of order unity. Assigning this to
the height of the energy barrier over which the interface
to jump, the waiting time for the interface is estimated
tw;eu/T. The velocity of the interface is simply the invers
of the waiting time, and can be expressed as

v5gexpS 2dD2

HT D , ~54!

whereg is a prefactor. Thus for small drivingH the velocity
v is expected to be exponentially decreasing withH21. In
order to check this, we take the logarithm of both sides of
formula ~54! and by using the relation Eq.~48! we obtain the
relation

~0.52c!ln~v !52
dD2

bT
1~0.52c!ln~g!. ~55!

As the driving force (0.52c) approaches zero, the value o
(0.52c)ln(v) decreases linearly and reaches the va
2dD2/bT at H50. The linear law is verified by the numer
cal simulation as is shown in Fig. 10. For three differe
bond energiese/TA51, 1.5, and 2, data points behave li
early in the vicinity of zero driving force and all linearl
fitted lines cut they axis at the point20.192 atH50. Since
the temperature isT50.5, so dD2/b is estimated abou
0.096.

We shall now estimate the constantb and the strength of
the pinning forceD. One starts from the analysis of the fre
energy of a binary lattice system without concentration flu
tuation. By solidifyingM5hl atoms, the free-energy gain i
written as

ud52M @DmA~12c!1DmBc#. ~56!
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The two terms on the RHS of the above equation repre
the free-energy gain by solidification ofA andB atoms, re-
spectively. Allowing for the local concentration fluctuation
we can write the total free-energy gain as

u52(
i 51

M

@DmA~12ci !1DmBci #

'2M $DmA@12~c6Dc!#1DmB~c6Dc!%

52MH6MDc~DmB2DmA!. ~57!

Here Dc is the concentration fluctuation,Dc5A^(Dc)2&,
and is estimated as follows. Since the probabilityp(M ,m) of
finding m B atoms in theM sites obeys the binomial distri
bution

p~M ,m!5
M !

m! ~M2m!!
cm~12c!M2m, ~58!

the mean value ofm is ^m&5Mc and its mean-square fluc
tuation is

^~m2Mc!2&5Mc~12c!. ~59!

Then

Dc5AK S m

M
2cD 2L 5Ac~12c!

M
. ~60!

Substituting the expressions~60! into formula~57! and using
the parametersLA /TA5LB /TB51,TA50.9, TB50.1, andT
50.5, the free-energy gain is expressed as follows:

u520.8M ~0.52c!60.8AMAc~12c!. ~61!

Notifying thatM5hl, the first term on the RHS correspond
to the bulk driving energyud , Eq. ~51!, and the second term
corresponds to the random field contributionur , Eq. ~49!.
Then the driving field is identified as

FIG. 10. Dependence of (0.52c)ln(v), the normalized velocity,
on the concentration difference (0.52c). The parameters areN
52000 ande51.0TA(3), 1.5TA(*), and 2.0TA(1), respectively.
nt
H50.8~0.52c! ~62!

and the strength of the random field as

D50.8Ac~12c!. ~63!

At the mean concentration,c50.5, the driving forceH
becomes zero and the strength of the random forceD be-
comes 0.4. From the expressions~62! and~48!, we obtain the
prefactorb as 0.8. FromD50.4, b50.8, and the estimate
dD2/b'0.096 obtained by the simulation,d is determined as
0.48, of order unity as expected.

It is worth mentioning that the driving forceH used here
is twice that of f̄ used in the RFI model~16!: H52 f̄ . The
factor 2 results from the fact that the energy gain is 2ud
when atoms change states from liquid to solid, or in terms
the RFI model, spins flip from downwards (si521) to up-
wards (si511).

E. The effect of the bond energy on the velocity

Obviously, the larger the bond energy is, the more di
cult it is for the interface to move. Figures 8 and 10 clea
show this tendency. For a systematic study of thee depen-
dence of the velocity, we fix the concentrationc50.4 and
vary e. Figure 11 shows the result for the system sizeN
52000 andT50.5. From the figure we can see that t
velocity decays with increasing the energye. Generally we
cannot formulate the velocity as a function ofe, but for large
energy things become simple. For large energy the interf
is almost flat, but since the system size is large enough,
a few kinks are always excited thermally. The density
those thermally excited kinks is proportional to exp(2e/T)
and they act as a solidification center. With increasing
ergy the difficulty of creating a kink increases as well a
therefore fewer kinks exist. Because the propagation o
kink along the interface is much faster than creating it,
can safely predict that the velocity decays in the same m
ner as the number of kinks:v;exp(2e/T). Figure 12 shows
the data of Fig. 11 in a semilogarithmic way. The data in

FIG. 11. Dependence of interface velocityv on the bond energy
e. The parameters areN52000,T50.5, c50.4. Simulation is per-
formed up to the time 105.
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large e/T range can be fitted by a straight line with slo
around unity, which agrees quite well with the predictio
This argument is not applicable for smalle because multi-
kinks exist on the interface.

Combining the above argument with the result Eq.~54! in
the preceding subsection, we get the velocity of the solid
cation front for an infinite system with large bond ener
under very small driving force (c being in the vicinity of 0.5!
as

v5ae2e/Te2dD2/HT. ~64!

From Fig. 10 we estimate the constant value ofa around 1.5
andd'0.5 as estimated in Sec. V D.

Some comments may be necessary concerning a s
system. As is shown in the Appendix, explicitly the veloc
ties of small systems are proportional to exp(22e/T) for es
5e l5e. This is due to the fact that the creation of an init
nucleus is required in these small systems, because t
exists usually no kinks at all at sufficiently large bond ene
and low enough temperature.

F. Very small bond energy regime

For very small but nonzero bond energy (e/TA!1),
namely the jump regime~a! of the two-phase region in Fig
6, the interface is pinned and therefore does not hav
steady-state velocity. The fact that the exponentn increases
from the value 0.51 of a 1D system to 1.0 whene is around
0.1TA reveals that the 2D effect on the system gets stron
as e increases. Pinning for small bond energye can be un-
derstood by the following picture: treat the very small ene
e as a perturbation for the zero-e case. In the absence of th
bond energy, there exists no correlation between neighbo
atomic columns in the 2D system and it becomes simpl
pile of 1D chains. Once an atom is pinned, it will stay in t
pinned state until becoming excited into the unpinned s
by the external driving forceH and it gets no help from its
neighbors. Therefore, the interface is rather corrugated
interspersed with many ditches with aB atom sitting at the
bottom. The dynamic exponentn can be approximately ex
pressed as

FIG. 12. Logarithm of the velocity ln(v) versus the bond energ
e/T. The fitting line has a slope around 1.06.
.
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n'
H

Hc
5

C02c

C02Cs
. ~65!

Here Hc is the critical driving force which separates th
moving interface~when H.Hc) from the pinned interface
~when H,Hc) for a one-dimensional diffusionless diso
dered alloy system. The above formula~65! shows a linear
dependence ofn on c. The suitability of this approximation
~65! can be verified by Fig. 2, where the solid line shows
approximately linear decrease ofn from 1 at c5Cs to 0 at
c5C0 in the solid side of the two-phase region.

As the small bond energy is introduced, the atoms in d
ferent columns start to affect each other. The bond ene
plays the role of an extra driving force which always tries
make the pinned atomic column catch up with its two neig
boring advancing columns. As a result, when the pinn
atom solidifies, the system gets energy gain not only fr
the driving forceb(C02c) but also from the bond 2e with
its two neighboring atoms. According to Eq.~65!, n can be
now approximately written as

n'
H

Hc
5

b~C02c!12e/TA

b~C02Cs!
. ~66!

This formula shows a linear dependence ofn on e. Roughly
speaking, this is what we have seen in the jump regime
Fig. 6. Because of the extra driving force 2e, the real exter-
nal driving forceb(C02c) required to keep the interfac
steadily moving becomes smaller than that@b(C02Cs)# in
the zero-e case. In other words, even forb(C02c),Hc or
c.Cs , it is still possible that the interface moves stead
provided thate is bigger than a critical valuee* , which
satisfies the conditionn(e* )51. In the case studied her
(c50.4, b50.8, Cs50.31, and C050.5), e* is about
0.04TA from the formula~66! by letting n51. The value of
e* is measured from the simulation at around 0.1TA ~see Fig.
6!. This means that the interface gets pinned whene,e* but
unpinned whene.e* in the two-phase region of the equ
librium phase diagram for very smalle. In addition,e* var-
ies with the concentration and the temperature. Note that
argument applies only to the very smalle* case where such
an interface structure of a single pinned atomic column s
rounded by two much advanced columns could exist ande*
can be considered as a perturbation.

G. Correlation function

In Sec. V C we have observed that the interface displa
ment for a finite system crosses over from the depinned
the pinned state as time proceeds. When does the sy
undergo a depinning-pinning transition? What is the mec
nism that leads to the transition? To answer these questi
we must discuss the development of correlations in the s
tem. Different sites of the interface are not completely ind
pendent, but their height and kink structure depends upon
heights of the neighboring sites. Figure 13 shows the spa
correlation function

G~x,t !5^h~x8,t !2&2^h~x8,t !h~x81x,t !& ~67!

at various times.



re

by
re
4.
s.

he

f

he

th
tion
is
face

un-
ize
em
e

izes
e

he
n-
all
the

to

n

524 PRE 59X. FENG et al.
Herex8 andx1x8 are two different lattice sites, and^¯&
means the average over all sitesx8 keeping the separationx
fixed. It is apparent in Fig. 13 that at a fixed time the cor
lation function increases with the separationx but saturates
for x larger than the correlation lengthj // : The correlation
extends up toj // but two points on the interface separated
more thanj // are uncorrelated. As time proceeds, the cor
lation lengthj // increases with time, as is shown in Fig. 1
The fitting curvej //;t1/3 is drawn just as a guide to the eye

For x@j // the correlation of the interface Eq.~67! at two
points is lost and the average^h(x8)h(x1x8)& can be de-
coupled as

lim
x→`

G~x,t !5^h~ t !2&2^h~ t !&25s2~ t !. ~68!

The saturation value of the correlation function in t
limit of large separationx is equal to the variances2(t) of
the interface positionh(t). Note, however, that the width o
the interface at long times scales with the system size

FIG. 13. Time variation of the space correlation function up
the time 105. The simulation parameters areN52000, c50.4, T
50.5, e51.5TA . Data are averaged for 50 independent runs.

FIG. 14. Correlation lengthj // versus the timet. The simulation
is performed with the system sizeN52000,e51.5TA , T50.5, and
c50.4. The curvej //;t1/3 is just a guide for the eyes.
-

-

is

s;N0.69, as can be read off Fig. 13. Figure 15 shows t
interface widths(t) as a function of timet. At time 105,
s(t) is about 20, which is at least less than 1/15 of the wid
of the interface in a 1D system with the same concentra
(c50.4) @4#. The thin interface width in the 2D system
due to the surface tension which tends to keep the inter
as flat as possible.

The pinning-depinning crossover phenomena can be
derstood in terms of the correlation length and the finite s
of the system. From the simulation of a rather large syst
N52000, we know how the correlation develops as tim
proceeds, as shown in Fig. 14. For systems with small s
the correlation should extend similarly. Therefore the tim
dependence of the velocity can be related to thej // depen-
dence of the velocity, as shown in Fig. 16. It contains t
information of four different system sizes. At the very begi
ning the interface is not affected by the system size and
systems behave in the same way. This corresponds to
common slope (;0.0263) of the initial part of the curves in

FIG. 15. Time evolution of the width of the interfaces(t). The
curves(t);t1/3 is just to guide the eyes.

FIG. 16. The velocityv of the interface versus the correlatio
lengthj // . The system sizes areN510, 25, 40, and 2000 from the
bottom to the top, respectively.
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Fig. 5. As time passes and when the correlation length
proaches the system size, the interface starts to slow d
and eventually the velocity becomes zero. This crosso
from depinning to pinning takes place later if the system s
becomes larger. For a very large system (N52000), j // re-
mains much smaller thanN and the interface stays in th
depinned state with a steady-state velocity.

VI. CONCLUSION

We have studied the diffusionless solid-liquid pha
transformation in a two-dimensional binary alloy by obse
ing the motion of the solid-liquid interface. Monte Car
simulations show that in the one-phase region the cry
grows with a steady-state velocity, and its bond energy
pendence and concentration dependence can be decoup
v(e,c)5 f 1(e) f 2(c) when the bond energye is not very
small. As far as we know, there is no theory on thise andc
dependence ofv so far.

In the two-phase region, the interface shows a com
cated behavior depending upon the system sizeN, the bond
energye, and the simulation timet. For a finite-sized system
under finite simulation time~up to t5105– 106), the growth
exponentn depends strongly one ~see Fig. 6!:

n,1 for e,0.1TA ,

n51 for 0.1TA,e,ec~N!,

n,1 for e.ec~N!,

n5n~1D ! for e→`.

Unlike the one-dimensional system, the two-dimensio
system can realize a steady growth also in the two-ph
region @0.1TA,e,ec(N)#. However, whene.ec(N), the
interface becomes pinned such that the spatial disorder o
alloy leads to a decay of the interface velocity. In the lar
energy limit (e→`), theoretical analysis and comput
simulations show that the exponentn has the same value a
its one-dimensional counterpartn(1D).

A peculiar result occurs for small but nonzero bond en
gies, less than about 0.1TA , as discussed in Sec. V F. He
pinning occurs as would be the case for vanishing bond
ergy but the exponentn is increased above the value of th
one-dimensional case (n.0.51). Therefore both for very
large and very small bond energy in a finite system,
interface will be pinned. Note, however, that the latter res
applies only to models of SOS type and probably not
systems with overhangs.

For a very large system (N→`) with a finite bond en-
ergy, the simulation reveals that the interface always mo
steadily within a finite simulation time that means for t
critical bond energyec(N→`)→`. This corresponds to the
thermal creep motion. We found that the influences of
bond energye and the driving forceH on the velocityv of
the interface growth are decoupled as indicated in Eq.~64!.
The velocityv decays exponentially withe andH21 in the
vicinity of zero H and for sufficiently largee.

In addition, we have also studied the development of c
relations along the interface and their relevance to finite-s
effects on the interface dynamics. The correlation lengthj //
p-
n
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along the interface increases very slowly with time, Fig. 1
If it reaches the system sizeN, the whole interface become
correlated and the interface asymptotically behaves like
one in a one-dimensional system, but as long as the sys
size is larger thanj // the thermal creep wins over the pinnin
force. Thus for the system studied here the limitsN→` and
t→` are not interchangeable.
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APPENDIX

Here we give closed-form expressions for the element
layer-jump frequenciesV1,2 introduced in Sec. IV, valid for
small values of the system sizeN. For small enoughN we
can analytically solve Eq.~35!. For infinitely large bond-
ing energies,es and e l , the transition frequencies hav
large differences v6 i(1)5v6 i exp(el(s) /T)@v6i@v6i(3)
5v6iexp(2el(s) /T). Then the closed analytical form ofV1

introduced in Sec. IV is obtained forN52, 3, and 4 from
Eqs.~29!, ~35!, and~36!. For N52,

V15v11v12H 1

v12~1!1v21~1!
1

1

v11~1!1v22~1!J .

~A1!

For N53,

V15
exp@2~es1e l !/T#

v21v22v23
@v11v21~v12v231v22v13!

1v12v22~v11v231v21v13!

1v13v23~v11v221v21v12!#. ~A2!

For N54,

V15
exp@2~es1e l !/T#

)
i 51

4

v2 i

3(
i 51

4

v1 iv1~ i 11!v2~ i 12!v2~ i 13!

3
~v1~ i 12!1v1~ i 13!!~v2 i1v2~ i 11!!

v1~ i 12!1v1~ i 13!1v2 i1v2~ i 11!
. ~A3!

The expressions forV2 can be obtained from the corre
sponding ones forV1 by replacingv1 j with v2 j and vice
versa, wherej stands here for any index in Eq.~A3!.

The solidification velocityv1 can also be calculated ex
plicitly as follows.

For N51,
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v15e2e l /T~12S1e~e l2es!/T!Y S 12c

v1A
1

c

v1B
D . ~A4!

For N52,

v15~12S1
2 !Y H ~12c!2

2v1A
2 ~v1Aee l /T1v2Aees /T!

1
2c~12c!

v1Av1B

~v1Aee l /T1v2Bees /T!~v1Bee l /T1v2Aees /T!

~v1A1v1B!ee l /T1~v2A1v2B!ees /T
1

c2

2v1B
2 ~v1Bee l /T1v2Bees /T!J . ~A5!

For N53,

v15e2~es1e l !/T~12S1
3 !Y H ~12c!3v2A

6v1A
2

1
3~12c!2cv2Av2B

2v1A~v1Av2B1v1Bv2A1v1Bv2B!
1

3~12c!c2v2Av2B

2v1B~v1Av2B1v1Bv2A1v1Av2A!
1

c3v2B

6v1B
2 J . ~A6!

For N54,

v15e2~es1e l !/T~12S1
4 !Y H ~12c!4

v2A~v1A1v2A!

8v1A
3

1~12c!3c
v2Av2B

v1A
2

3S ~v1A1v1B!v2B

2v2A1v1A1v1B
1

~v2A1v2B!v1B

2v1A1v2A1v2B
D 21

12c2~12c!2
v2Av2B

v1Av1B
S v1Av2B

v2A1v1B

1
~v1A1v1B!~v2A1v2B!

v1A1v2A1v1B1v2B
1

v2Av1B

v1A1v2B
D 21

1
c2~12c!2

2

v2Av2B~v1A1v2A1v1B1v2B!

v1Av1B~v1A1v1B!~v2A1v2B!

1~12c!c3
v2Av2B

v1B
2 S ~v1A1v1B!v2A

v1A1v1B12v2B
1

~v2A1v2B!v1A

v2A12v1B1v2B
D 21

1c4
v2B~v1B1v2B!

8v1B
3 J . ~A7!

HereS1 is defined in Eq.~41!. We should note that the result forN51 in Eq. ~A4! differs from the usual result, Eq.~3!,
for the pure one-dimensional system by the presence of the exponential factors. This difference is due to the periodic
condition.

The analytical result of the velocityv1 is compared with numerical simulation results explicitly for the case with sys
sizeN54 in Sec. IV B. We have also checked the results for smaller systems and found good agreement, within 1%

In Sec. IV, we found that the 2D system with a large bond energy is effectively a one-dimensional system w
transition ratesV1 and V2 . Then we can use some additional results for a real one-dimensional system. For ex
following the procedure of Ref.@2# we can derive the expressionW($X(n)%) for the probability of finding a configuration
$X(n)%[$X1

(n)
¯XN

(n)% in the nth layer from the steadily growing interface:

W~$X~n!% !5)
i 51

N

cX
i
~n! for n<21, in the solid,

and

W~$X~n!% !5)
i 51

N

cX
i
~n!H 11S1

NnS V2~$X~n!% !

V1~$X~n!% !
211

12S1
N

V1~$X~n!% !^1/V1&
D J for n>0, in the liquid. ~A8!

From Eq.~A8! one can calculate the average concentration ofB atoms,c(n), in thenth layer from the interface, by fixing the
configuration of one lattice site, sayi 51, to aB atom (X1

(n)5B), and by the summingW($X(n)%) over all possible configu-
rations $X(n)%5$B,X2

(n)
¯XN

(n)%. For example, when the initial concentration isc5CS , whereS151 and the steady-stat
velocity v150, c(n) is obtained as

c~n!5H CS for n<21,

CL for n>0.
~A9!

Both phases have the equilibrium compositions, as one finds in the case of the real one-dimensional system@2#.
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