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Creep motion of a solidification front in a two-dimensional binary alloy
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The propagation of a solidification front in a two-dimensional binary alloy is studied by Monte Carlo
simulations. A random atomic configuration is quenched and the atoms that prefer to be in the liquid phase act
as quenched pinning centers to the advancing solidification front. For a system with large kink formation
energye and finite system widttN, we show that the liquidus and solidus lines in the equilibrium phase
diagram correspond to pinning-depinning transition lines, like in a one-dimensional system. In the one-phase
region the front is depinned and propagates steadily, whereas in the two-phase region it is pinned and the
velocity v decays as time passes with a power-law behavioft) ~t”~*, with v<1. For a moderate or for
a large widthN, the pinning transition is smeared out and the front propagates steadily even in the two-phase
region by thermal creep. When the driving fordeis small, the velocity decays exponentially witle and
H~1. The size dependence is interpreted in terms of the height correlp§h063-651X99)06601-5

PACS numbg(s): 05.60.Cd, 66.30.Dn, 05.40j

[. INTRODUCTION terface extends in the direction normal to its propagating
direction. Then a new degree of freedom comes into play:
Interface motion in random media is observed in variousThe interface tension tries to keep the interface straight and
disciplines of physics: random magnets, charge densitgounteracts the roughening effect by thermal fluctuations and
waves, steps on crystal surfaces, to name just a few exsy the quenched randomness. We shall find that the elastic
amples. It can be generalized to elastic manifolds such agstoring effect due to the interface tension leads to correla-
polymers, vortices in superconductors, etc. In these systemtions along the interface, but the correlation length grows
quenched randomness pins the motion of the interface and aéry slowly with time. For a system with a finite size and a
absolute zero temperature a sharp pinning-depinning translarge restoring force, the correlation eventually catches up to
tion takes place at a finite strength of an external drivingthe system size and then the interface in the 2D system
force. At a finite temperature, however, the pinning transitionshows the same asymptotic dynamics as the 1D system.
is smeared out by the creep motion of the interface. However, for a large system with a small restoring force, the
In this paper we study the creep motion of a one-interface propagates steadily even in the two-phase region.
dimensional solidification front in a binary alloy system in An absence of critical pinning in a large 2D system
two dimensions. The simpler problem of a one-dimensionalvas already shown qualitatively in a Monte Carlo study by
(1D) system with a zero-dimensional interface has been studlacksonet al. [14]. Here we study the front propagation in
ied by Temkin and co-workefd —4]. The atomic configura- the two-phase region more systematically. It is found to be
tion throughout the whole system is frozen and the systengoverned by thermal creefl5], furthermore the steady-
evolves only by the motion of the solid-liquid interfafs). state velocity v depends on the driving forced as
For this diffusionless model, the equilibrium phase diagramy <exp(—H™%). The result can be analyzed in terms of the
in the phase space of concentration and temperature is fourendom field Ising(RFI) model[16] or in terms of driven
to determine the critical pinning. In a one-phase region, thelastic manifold$17,18.
interface moves steadily and in the two-phase region the The structure of our paper is as follows. In Sec. Il, we
steady velocity vanishes. Atomic clusters which prefer tobriefly summarize the main results on a 1D model of an
remain in the liquid state act as quenched obstacles to hindémterface moving with random jump probabilities. When they
the propagation of the solidification front. This one- are chosen to reproduce a typical two-component phase dia-
dimensional system is found to be equivalent to a randongram of an ideal solution, a pinning-depinning transition
hopping model with a power-law distribution of waiting takes place at the solid-liquid phase boundary. Steady crystal
times for interface jumpgs—12]. In the two-phase region the growth occurs in the solid one-phase region, steady melting
interface positiorh(t) shows an anomalous time dependencein the liquid one-phase region, but nonsteady behavior oc-
as a power-law behavidn(t)~t” with an exponentv<<1 curs in the two-phase region. In Sec. Il the model is ex-
which depends on both the temperature and the concentréended to two dimensions where the energy cost for the in-
tion of the alloy. terface deformation is taken into account. Practically we
In the present work we study the same system but in twaestrict our investigations to models of solid-on-sdl809
dimensions. In the two-dimension&D) system the 1D in- type, where overhangs on the interface are not allowed. In
particular, we also show that the model can be mapped to a
random-field Ising(RFI) model with temperature-dependent
*Permanent address: Dept. of Physics, Keio University,random fields. The different behavior of the system inside
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan. and outside the two-phase coexistence region is emphasized.

1063-651X/99/5601)/512(16)/$15.00 PRE 59 512 ©1999 The American Physical Society



PRE 59 CREEP MOTION OF A SOLIDIFICATION FRONT INA . .. 513

1 T T ' T w,p and w_g denote those for 8 atom. The ratio of the
probability that an atonX (=A or B) is in the solid state
08 L L i over that for it being in the liquid state is then determined

kinetically by w _x/w . x and this ratio should be equal to the
one given thermodynamically @& “#x'T, whereA uy is the
06 [ . chemical potential difference of an atoxhbetween the lig-
uid and solid states. Here and thereafter the temperatige

= T . . o .
i measured in units of energy. The transition frequencies
04 - . should then satisfy the relation_y/w,y=e"2#x/T_ At a
s i temperaturel near the equilibrium melting temperatufe
02 b \ of anX (= A or B) atom, the chemical potential difference is
' i approximately written af\ uyx=(Lx/Tx)(Tx—T) with the
specific latent hedty . For the mixture ofA andB atoms, an
0 Ly ! L ideal solution without mixing energy but with a mixing en-
0 02 Cs 04 Co 06CL 08 1 tropy is assumed. Then the equilibrium phase diagram is
c obtained with the solidu€4(T) and the liquidusC,(T) lines
FIG. 1. Equilibrium phase diagram. as
In Sec. IV we consider the limit of large bond energies such Cy(T)= 1—e 2uall
that the interface between solid and liquid tends to stay very s e Aup/T_g=AuplT’
flat on the scale of atomic distances. In this limit we show 1)
analytically that the 2D system behaves in many respects like
a 1D counterpart with a zero-dimensional interface: The &M (1—e AualTyg Aue/T
(T)=

phase boundaries correspond to the pinning-depinning tran-
sition lines, and the average interface position in the two-
phase region shows an anomalous power-law time depen- o
dence with exactly the same exponent as in the 1D systen®S i shown in Fig. 1. N _

The result is confirmed by detailed MC simulations for the N the diffusionless phase transition considered here, the
2D systems with small sizes and large bond energies in Segolidification proceeds via the propagation of a single solid-
V. But the simulations there also show that a system with afiquid interface over a frozen configuration AfandB atoms.
infinite width (i.e., in the limit of infinite length of the one- Although each atom has fixed probability to solidify or melt,
dimensional interfadealways settles to a motion of a con- the _s_ol|d|f|cat|on and melting take place only gt_t_he interface
stant velocity. Even inside the two-phase region, such a,ﬁ)qsmon. In other Wo_rds, we exclude the po_SS|b|I|13_/_of nucle-
infinite system is not pinned but moves at a slow creepingtion of the energetically favorable phase in positions away
velocity. This creep motion is analyzed in terms of a RFITrom t_he solid-liquid interface. The theoretlcall analysis _by
model, and our numerical resultSecs. VD and V E con- Temk|n'[1—3] rgvea}led that a steady—state motion of the in-
firm quantitatively the analytical estimates of the dependencéerface is possible in one-phase regions, but in the two-phase
of the creep velocity upon the driving force and the bond€gion the ‘average velocity of the m_terface advan(_:ement
energy. The development of the correlation along the interyanishes with time. In a one-phase region the mean displace-
face explains the finite size and the finite time effects ob/Ment(h(t)) of the interface is linear in timeas

served in the asymptotic behavior of small systems. Section

VI summarizes and concludes our study. Exact but lengthy (h(t))=v,t (c<Cy),

formulas of transition probabilities and velocities for systems 2

with finite widths and large bond energies are summarized in

the Appendix. (h(th=-v-t (c>Cy),

e*A,U,B/T_ e*A,u,A/T

with the velocities
Il. SUMMARY OF ONE-DIMENSIONAL RESULTS

Before we start the study of the 2D system, it is useful for w_ 1

later comparison to briefly summarize the 1D result. The U+:(1_<_>) /< >

microscopic model originally proposed by TemKit—3] is

as follows: On a one-dimensional lattice two species of at-

oms, A andB, are distributed uniformly with the concentra-

tion ¢ of B species. This atomic chain is separated by a

solid-liquid interface into two parts: the liquid in the upper

part and the solid in the lower, for example. The atomic v =<1_<&>) / <i>
w_

configuration is frozen and atoms cannot move. They can
only change their state between the solid and the liquid,

andw_ , denote the solidification and melting frequency for —{1-[(1—c) A, 2B
anA atom(or probability of phase change per time ynénd
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Here w, (=w,a Or w,g) refers to the solidification fre- Here the superscripts and| refer to the solid and liquid
qguency andw_ (=w_, Or w_g) to the melting frequency. state, respectively. Since the mixing energy
The angular brackets denote the ensemble average of the p 5
quantity within the brackets. s €ant €Bg

The fact that atC; and at C, the averagesS, €aB 2 ©)
=(w_lw,) andS_=(w, /w_) are equal to unity and that
at these concentrations the velocities andv _ vanish, re- is zero, both phases are ideal solutions. The interface thus
spectively, reveals that the phase boundafigandC, rep-  corresponds to the place where the atomic cohesion is broken
resent the critical concentrations where the system undergo@sd each broken bond depletes interface energy. We study
a phase transition between the pinning and depinning statethie effect of the interface energy on the dynamics of the
In the two-phase coexistence regiGh<c<C,, the mean alloy solidification.
displacement is no longer linear in time. For example, the The phase transformation is assumed to take place sto-
positionh(t) of the solidification front instead advances as achastically at the interface. The phase change of an atom is
power law (h(t))~t"+ in the concentration rang€,<c associated with the breaking of cohesion of nearest neighbor-

<C, with ing atoms in the same phase that depletes energy. Depending
on the procesgfreezing or melting and on the numbey
IN(walw_p) (=1,2,3 of nearest-neighboring atoms in the same phase,
Co(T)= N(w,q0_plo_pw:g) (4) there are 12 transition frequencies: six solidification frequen-

cies denoted a&, x(j) and six melting frequencies denoted
Here the exponent, is less than unity and decreases onby w_x(j). HereXrefers to theA or B atom. These frequen-
leaving the phase bounda,: The steady-state velocity cies should satisfy the detailed balance condition to ensure
vanishes in the two-phase region. According to Derrida’sthe equilibrium phase diagram as
[7,8] general treatment of the 1D hopping model, the expo-

nentv, is determined from the relation wix(J)=w i xexd —(j—2)¢/T],
. . (10
w_\"+ o_x(j)=w_xexgd —(j—2)&/T].
27 =1 5)
w4

The transition frequencies. x of componentX at the kink
position (=2) are related to the chemical potential differ-

In the present case, this equation can be written explicitly a
enceA uy between two phases as

Vi

(1 )(“’A pol 22B) o1 ©6) A
—C Cc =1. )
oin oo X p(ﬂ) (11)
(l),x T
At c=C,, .
0 with
IN(w_/wy))=0 7
(In( ) (7 N Te—T w
and v, =0. The Monte Carlo simulatiofi4] gives good Mx= Bx = IX=EXTT )

agreement with the theory.
For a 1D system accordingly the phase boundary at &he solidusC4(T) and the liquidus linesC|(T) obey the
finite temperature corresponds to the pinning-depinning trandetailed balance principle in the form
sition line. The natural question is whether this statement is
still valid even in the 2D system. We address the similarity (1-Coo p=(1-Chwa,

and the difference in the two systems in this paper. 13
Csw_p=Ciw,p,

Ill. TWO-DIMENSIONAL MODEL and they are obtained as in Ed).

The 2D kinetic model for a diffusionless alloy growth was ~ There exists a special concentratioy where the free
also introduced by Temkifil3]. A simple square lattice is €Nergy s per solid atom is equal to the free energy per
randomly occupied byA and B atoms and it is decomposed liquid atom,
into two parts by a solid-liquid interface, liquid above solid,

—(1_ S S

for example. The solidification or melting takes place only at ¢s=(1=Co)ua(T) + Copp(T)

this interface: Only those atoms which have both solid and o, | |

liquid nearest neighbors have the possibility to transform to = &1=(1=Co)pa(T)+ Coup(T) (14

the other phase. In the study reported here, atoms are n

allowed to change their positions. The atomic configuration

is quenched. Solidification therefore proceeds via a “diffu- (1—Co)Apa+CoApug=0. (15)
sionless” transformation. For simplicity we assume that the

cohesive energies act between nearest-neighbor atoms of thgom Eqgs.(11) and (15), we obtainC, as in Eq.(4). Equa-
same phase but they do not depend on the type of atoms: tijon (15) is equivalent to Eq(7) and we shall see later that

8 s s the interface velocity of a large 2D system vanishes at this
€pn= €ap=€gp= €  (B=S)I). (8 concentratiorC,.
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The phase diagram with coexistence lin€g(T) and
C(T) as well as the special lin€y(T) is depicted in Fig. 1
with the following set of parameter value$,=0.9, Ty
=0.1,Lo/Tao=Lg/Tg=1. Itis seen that the solidification or

melting of the system depends not only upon the cooling
condition but also on the alloy composition. At a fixed tem-

peratureT betweenT, and Tg, the system remains in the
solid state as long as the concentrations smaller than
C(T). Whenc comes to lie betwee@®(T) andC,(T), the
solid and liquid phase coexist, but whenbecomes larger
thanC,(T) the system melts completely.

The above 2D growth model can be mapped onto th

random-field Ising(RFI) model. The RFI model is defined
by spins with two possible values= + 1 that are placed on
sitei of a lattice. Its Hamiltonian is given by

HE_JZ SiSJ_E (fi+f_) S;.
(i.J) '

(16)
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related for different sites. It may be worthwhile to note that
the two-dimensional case corresponds to the lower critical
dimension of the RFI modgi9].

IV. DIFFUSIONLESS GROWTH AT LARGE
BOND ENERGY

In this section we show analytically that for large bond
energies a two-dimensional growth system with finite width
N will be equivalent to a one-dimensional system. This type
of behavior is well known to occur in critical phenomena of

quilibrium statistical mechanics. We consider the alloy so-
idification starting from a flat interface configuration. The
solidification is initiated by the formation of a nucleus con-
sisting of a single atom with two kinks sitting on a flat one-
dimensional interface. If the kink formation energy is
large, this nucleation process is very slow compared to the
lateral growth of the island afterwards. The solidification
proceeds layer-by-layer by the single nucleation and growth

Here s;=+1 represents the solid state=—1 represents mechanism and the probability of multilayers and multinu-
the liquid state,S;, denotes the summation over all clei processes is negligibly small: Once a cluster appears, it

nearest-neighbor paif$,j), and=; is the sum over all spins SOON spreads .Iaterally until thg whole layer is filled. If the
in the systemJ is the exchange energy between the ferro-00Nd energy; is large, the melting also proceeds by a layer-

magnetically coupled nearest-neighbor spins and determinéW"ayer mechanism. In these cases the advancement of a flat

by the bond energies as

1
J:Z(€s+5|)- 17

interface by one layer to the neighboring layer position may
be considered as a single “elementary” action. Then one
may construct an effective 1D model where the “elemen-
tary” transition frequencie€).. of a “layer” jumping for-
ward (+) and backward {) play the same role as.. play

f is the external uniform driving force which is proportional in @ real 1D system. In reality these “elementary” jumps

to the concentration differenceC{—c). f; is the quenched

consist of many atomic solidification-melting subprocesses.

local field caused by the concentration fluctuation from theVe can calculate the elementary frequenéiesin terms of

average concentration of the B atoms. Since each lattice
site i is occupied by either aid atom with the probability
(1—c) (the average concentration Afatoms or a B atom
with the probabilityc (the average concentration & at-

oms), the probability distribution of the quantityfi(+f_) is

p(fi+f)=(1—c)8(f;+f—fa) +co(f+f—fg). (18)

Heref , andfgz depend on the temperature and the latent hea#{X' ,X'z, ..

and are defined as

1 1 T
fA(T)z_EAMAZ_ELA l_T_A y
19
1 T (19
fa(T)=—5Aus=—5Ls =3

In addition, the driving forcd (T) or the average free energy
gain by solidifying one atom is

F(T)=(1—c) fa(T)+c fg(T), (20)

wherec is the average concentration Bf atoms. Accord-
ingly, the randomly quenched fielf has a zero average
value

(f)=0. (22)

atomic frequencies .. . From the analysis, we shall find the
remarkable result that the exponenbbeys the same relation
(5) as in the 1D system. This result will be tested by the
Monte Carlo simulation in the next section.

First consider the situation when the layer has just been
completed and the flat interface is located between the solid
layer with an atomic arrangemefX®}={X3,X3, ... X}}
and the liquid layer above with an arrangemeix'}

. X\}. HereX®! denoteA or B atoms and
(=1,2, ... N) denotes the column number in the square
lattice. The solidification, for instance, starts by the nucle-
ation at a site in the liquid layer. The solid nucleus grows to
the right or to the left, but can also melt back. Finally the
layer is completed by the solidification at the last $it¢lere
we call the sequence of events starting from the isiéad
ending at the sité a “trajectory.” After an average waiting
time Y, the interface has moved one layer forward with a
probability P or one layer backward with a probabilit®,
where P+ Q=1 obviously. Then the transition frequencies
of layer jump are given by

Q. =P/Y and Q_=Q/Y. (22

The forward transition probability? obeys the following
recursive equation, with definitions given afterwards:

N N
P=i§1 piP;+ Pgl [pi(1-P)+qi(1-Q)]. (23

Here the angular brackets represent the average over the dif-

ferent realization of randomnesk. is then assumed uncor-

Here
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w,i(3) 1
Pi= — =0 (37 (24 Q.= 3 pPi=3 0.(3)P;,
> w+.<3)+2 ®_i(3) (29
is the probability that a solid island first nucleates at the site Q- :21 0_i(3)Q;.

i on the initial flat interface. Similarly

w_i(3)7 (25)  The important feature of the obtained result, E2§), is that
in the used approximation the frequency of solidification,
gives the probability of the first melting of a solid layer at the {2+, depends only on the atomic configuration of the solidi-
ith site. We introduced the abbreviated notatien; for  fying liquid layer above the interface. Similarly the melting
w.x. T represents the mean waiting time before the firsfrequency()_ depends only on the atomic configuration of

the melting solid layer at the interface.
soI|d or liquid nucleus is created on the flat interface. f th duced f
In Eq. (23, P, represents the probability that the solid , " ©€rMs of the introduced frequencies. , we can write
Ca ] . down some important characteristics using the known 1D
cluster which started from the sifecompletely covers the
results. The solidification velocity . and the melting veloc-
interface without being remelted before finishing the cover- are given as
age, so that the interface never comes back to the initial fIa{y v- 9
configuration during the solidification process. Simila@y
defines the probability that the liquid cluster started from the 1_<Q_>} / <i>
Q. Q.

sitei completely melts the interface layer without being com- ve=

pletely resolidified to the original interface configuration. (30)
Therefore the first term on the right-hand sidRHS) of 0 1

Eqg. (23) represents the contribution from all the possible U_:—[ —<—+> / <—>

trajectories which never come back to the initial flat interface Q. Q.-

during the solidification process. The second term gives the

contribution from those trajectories which lead to the initial Here(: --) means the average over all possible configurations
interface configuration during solidification. Those started byin the layer, for example,

solidification but remelted have a probabilip/(1—P;) to

return to the original interface configuration, and those < N

&>: 2 2 MHQ- (32)
X,=A.B

started by melting and resolidified have a probabilit
Y g b Y + Xn=AB 1 (Xp - Xy) =1

0i(1— Q). Afterwards the interface has the same probability
P to be solidified. Equatiorfi23) has a solution
where HiN=lci (with ¢;=c for X;=B andcj=1—c for X;
N =A) is the probability of finding the configuration
> piPy {X;---Xy}. These steady-state velocities, andv _, vanish
(26)  under the following conditions:

P=

N—.
iPitaiQ;
2, [PP+aq] (Q_10)=1 and(Q,/Q_)=1, (32

Obviously Q=1—P. In the same spirit we can derive the

. ” . respectively. In the region where steady-state motion of the
equation for the average waiting time P y g y

interface is impossible, the mean displacenidrt)) shows

N a power-law behavioKh, (t))~t"+ and (h_(t))~—t"-
Y=73 [pP+qQi]+(r+Y) with the exponents , andv_ determined from the relations
P i
N ((Q_19,)")=1 and((Q,/Q )"-)=1. (33
X2 [Pi(1-P)+ai(1-Q)l. (@7

At the point where

Equation(27) is approximate because we take into account
only a single nucleation and growth during the interface evo-
lution.
It has the solution the mean displacement vanishés, (t))=(h_(t))=0, and
v, =v_=0. Note that in accord with the 1D resul[t$—3],
r the frequencied)_ and Q). in Egs. (30)—(34) should be
N (28 taken for the same layer.
E PP, +q;Q;] In order to evaluate the elementary layer-jump frequen-
= cies of Eq.(22), we need the probabilitieB; andQ; in Eq.
(29). ForP; withi=1,2, ... N, one can write the following
Now we obtain the desired transition frequencies: set of equations:

(In(Q_/Q.))=0, (34)

Y =
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N
iﬂl ‘”+i); fi{o_joii},Wnm), (39

1
Pi=—{wri-yPi—1jtorirnPiiva)s Q.=
W|,|

where the functiorf, , describes the contribution from the
Pi, T {o_iPit1, . jn +kth trajectory.W,, , is given in Eq.(36). A similar formal
bin expression can be written fé2_ for the same layer:

tw_inPi, it orioy N
XPioq, L jntOiiiniy Q=(iﬂl "’i)Ek: fo{orjo-jhWam). (39
XPi iensahs (39 . .
We cannot calculate the trajectory sum in the general case,
but we can show thal,f ,=2,f_,. For each+kth trajec-
P ,i+N—2:VV+{w—iPi+1, L jiN—2 tory there exists a-kth trajectory with _precis_ely the oppo-
ii+N-2 site sequence of elementary events, like a film running for-
T P. _ ward for the+ kth trajectory and backward for thekth one.
—(+N=2)"1i, ... i+N-3

Through this one-to-one correspondence between trajecto-
toiiin-n(D}. ries, one gets , ,=f_, and the relation Eq37).
From the property, Eq37), that the ratic) _ /Q , is just
The Q;’s obey completely analogous equations apart fromthe product of the ratios of the frequencies;/w ., ;, we can
index changes, but an explicit evaluation can be circumhow derive that the 2D system with large behaves simi-

vented as shown in the Appendix. Here now1, ... N larly to the pure 1D system. The average of the ratio reduces
—3 andP; ., is the probability that the solid cluster to
with (n+1) particles which occupies the sites froimo
(i+n) finally fills the layer ofN atoms without being com- <&> —gN (40)
pletely remelted. The denominators are the total rate of pos- Q4 N
sible events for the nucleus occupying the sitési+n, with
Wii=o_i(D+oii-toiiiy, i s O_g
S+=<—>=(1—c) +c (41
Wy +A OFs

Wiisn=0-ito_jinT@si-yFt0iiiney, (36)
From Eq.(30) the growth ratev , then vanishes &6, =1.
Wiiin-2= @ i+ 0_(isn-2)FT O irn-1)(1). This is precisely the same condition for the absence of steady

N
=1 (42)

v
-A

)
WA

(1-c) ++c

growth in the 1D system Ed3), and it corresponds to the
We consider Eqs35) and(36) with periodic boundary con-  solidus line on the phase diagram. Moreover, B4) for the
ditons. Namely, w. . n=w-k, and a cluster which exponentv, has the form
reaches a boundary of the layer can continue to grow from )
the other side of the layer. “’—B) '

For a given configuration ofA-B atoms in the layer, one w.iB
can solve the linear equation85) numerically. A closed .
analytical form of the solution is obtained for=2,3,4 and @nd gives the same exponent as for the 1D systerfsee
is summarized in the Appendix. The remarkable result foundEd- (6)]. All t.hese results o'btalned for the SO|IdIfIC§1tI0n front
in the analysis is the relation can b_e easny_co_nverted into the melting front just by ex-
changing the indicest and —. For example, the melting
velocity v _ vanishes at the concentration

Q_ N w_i
o, -1l (—

(O 7 Wip Wip
S =(1-c)—2+ =1. (43)
w_ A w_p
for N=2,3,4. So far this result has been explicitly shown
only for systems with finite sizedl=2,3,4, but it can be V. NUMERICAL RESULTS AND DISCUSSIONS
extended to an arbitrarily largeé by a plausible argument. It _ )
is clear that each trajectory which gives a contributiofito A. Implementation of the algorithm

has the common factdi{_ o ;, because all atoms in the  For the analysis of the 2D alloy solidification with general
liquid layer have to be solidified at least once. An exponenvalues of bond energies and arbitrary system Bizee per-

tial factor contained at the initiation of a solid nucleus, form Monte Carlo(MC) simulations of a lattice model. On a
w,1(3)=w,exp(—¢/T), is compensated for by the factor square lattice wittN columns andV rows, A and B atoms

at the endw  (1)= w . neXP(g/T). Index “1” here simply  are distributed randomly with a mean concentratiaof the

is the place where the nucleation of the new layer has starte® component. Each atom can be in either a solid or a liquid
Additional melting and resolidification at the sijein the  state. We use the solid-on-soliO9 model such that the
intermediate stage introduces a faciorjw ;. Thus we can liquid phase stays above the solid phase: Overhangs are for-
formally write (), as a sum over all possible trajectories, bidden at the interface. Then, an interface configuration is
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defined as the set of heights of the solid phfsé for col- : : : :

umnsi=1 to N. Initially an interface is flat at a height 1¢—o—o—o o -

h;(t=0)=h(0) for all the columns. Each row is assumed *e

periodic and both ends of each column are assumed free. 08 L . i
For the motion of the interface, onBN atoms contingent )

to the interface are involved. Let us denote the interface con- ¢

figuration as{h;}, the solid-atom arrangement at the inter- 06 o -

face as {X%(h;)}, and the liquid-atom arrangement as >

{X'(h;+1)}. The melting rate of a solid atom on théh o

column depends on the numbeiof neighboring solid atoms 0.4 ]

as w,izw,XS(hi)(ji) and the solidification rate of a liquid

atom above the interface depends on the numbef neigh- 02 | -

boring liquid atoms a3u+izw+x|(hi+1)(j{). Then, during

the time interval 0 ! ! ! !

0 0.1 0.2 0.3 0.4 0.5
[+

N N

At=1 Wi+ w_il, 44
/( |:El ! 21 ') “4 FIG. 2. Exponentv, of the mean displacement at various con-
centrations oB atoms for the four-column systeN:=4. The solid

an atom in theth column in the liquid or solid layer changes line represents the theoretical expectation Ej) and the dots

its state with the transition probability represent the MC results.
P.(i)=w+;At, (45) column lattice:N=4. The parameters governing the phase
diagram arel,=0.9, Tg=0.1, andL,/To=Lg/Tg=1. The
wherei=1, ... N. Here+ (—) refers to the solidification correspondent phase diagram is shown in Fig. 1. Other

(melting of the atom at the heightt;+1 (h;). Since the parameters are chosen ag/To=¢/T4,=3.0 andT=0.5.
probability (45) is normalized, some event takes place within Frequencies are chosena@s = w_g=1, which defines our
the time intervalAt. Therefore, our simulation algorithm unit time, andw  ,=1/w,.g=2.226. The equilibrium con-
runs as follows. Pick up a random number between 0 and kentrations at this temperature a@,=0.310 and C,
If it falls in the interval between=,}P.(n) and =0.690. By solving Eqs11), (12), and(6), the exponent for
3,-1P.(n), then the liquid atom at the sitei,h;+1) the displacement of the interface is obtained as
solidifies and the interface height increases. ,\lf the random 1

nurrilg)i:r falls in tr'Le interval ibetween2n:1P+(n) V+:1_25|,.(_C) (0.31<c<0.50). (47)
+3,_3P_(n) and =, _,P.(n)+X2,_,P_(n), then the c

solid atom at the sitei(h;) melts and the interface height
decreases. After each configuration change the time increas
by At. The mean displacement of the interface at the time
is defined as

Since the bond energieg/T=¢,/T=5.4 are large, the ther-
ﬁ?ally excited kink density is small; exp(g/T) is of the
order of 10 3. Then the solid-liquid interface is expected to
advance by the single nucleation and growth mechanism as
1 N is described in Sec. IV.
(h(t))= N 2 (hi(t))—h(0), (46) _ The _exponenty+ and the veIO(_:ltyu+ obtained by th(_a
i=1 simulation are presented as functions of the concentration

in Fig. 2 and Fig. 3, respectively. The velocity in Fig. 3 is
o /. ; ; _ determined from the asymptotic slope of the displacement
|p|t|al position of the interface. Averag.es of physical quanti-\ arsus time and it has a nonzero value even in the two-phase
ties have been taken from 50 to 150 independent sampleS,qqion. The solid line in Fig. 2 represents the theoretical

With the present algorithm, we reproduced the results of  opavior Eq(47). The solid line in Fig. 3 is the velocity Eq.
1D diffusionless solidification obtained previou@ﬁ. In ad- (A7) obtained theoretically foN=4. The deviation of the

dition, we simulated a two-column system which is Com'exponentu+ obtained by simulation from the theoretical
pased of ane colum.n of pur atoms and one column Of. value near the phase bounday is also observed in a 1D
pure B atoms. For this system we can calculate the Veloc'tycase[4] and is probably due to the finite simulation time.
‘?:omparing the analytic predictidsolid line) with the simu-
'lation results(symbolg, we can conclude that the 2D diffu-
sionless crystal growth in the infinite bond energy limit
obeys the same law as the 1D counterpart. It means that the
interface advances steadily in the one-phase region, but the
steady-state velocity vanishes in the two-phase region.

where(---) represents the sample average &f@) is the

exact velocity quite well. For a further check of our program
the equilibrium distribution of kink height is investigated for
a 2D single-component system and the Boltzmann distribu
tion is confirmed.

B. Large € limit
C. The effect of bond energye and system sizeN

In Sec. IV we proved that when the bond energigare : i
on the interface properties

infinitely large and the system width is finite, the 2D system
has asymptotics equivalent to the 1D system. In order to It has been known13] that the interface of a 2D alloy
check this, we simulate the interface motion of a four-system has a steady-state solidification velocity in the solid
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FIG. 5. Log-log plot of the mean displaceméhi(t)) as a func-
| tion of timet for three system size®i=10, 25, and 40. The bond
energy ise=1.5T,.

FIG. 3. Steady-state velocity, versus concentratioa for the
four-column systemN=4. The solid line represents the theoretica
expectation Eq(A7), and the dots represent the MC results.

phase regiond<Cs) and a steady-state melting velocity in energye. Averages have been taken over 50 to 150 indepen-
the liquid phase regionc(>C,). Naturally, the basic ques- dent runs. Figure 4 depicts the raw data for six different sizes
tion we want to ask is how the interface in the two-phasey ranging from 20 to 80 at the fixed bond energfT,
coexistence region behavgs. There are many parameters i 0. The simulation is performed up to the time® 1ni-

the system, but the ones in the 2D system which are neyg|ly the displacemenh(t) increases linearly with time
compared to the 1D system are the bond ener@ind the  4apendent of the system sike For a time longer than the
system sizeN. Therefore, we study the effect of these two . <o \er timet,(N) which depends on the system size, the

parameters on the dy”am'cs of the interface. The other .p.as'ystem crosses over to a pinned state with the displacement
rameter values are kept fixed to reproduce the same equlllq-

fum phase dagram, Fig. 11,09, To-01 LT, (11N PO B 280 -aus o up & sineter
=Lg/Tg=1. We choose the concentratia+ 0.4 and the - Y P

temperaturel = 0.5 such that the corresponding phase poinlrrom around 0.51 to 1 as the system sizencreases from 25

is located in the two-phase coexistence region with a solicﬁo_ 80. The same tendency is also obs_ervablg for a s_ystem
phase favoredsee Fig. 1 Then the choice ofo s=w g with a smaller bond energy/T,=1.5, as is depicted in Fig.

—1 leads to solidification frequencies, ,= 1/w, g=2.226 - Here the simulation is performed longer up to the time

at T=0.5. For simplicity, the bond energies and ¢, take =10%. The displacementh(t)) clearly shows the crossover

always the same value;= ¢, =e. from the steadily moving interface to the pinned growth.
We first study the time dependence of the interface dis- In the simulation, the solidification starts from a straight

placementh(t)) for various system sizel at a given bond interface. As atoms on the interface change their state be-
tween the liquid and the solid states, the interface gradually

. T T T T roughens and bumps appear. At the beginning, bumps are
small and isolated from each other. Therefore the interface
does not feel the size differences among different systems
and displays a common linear law. However, at a crossover
time when the typical bump size reaches the system size, the
system is affected strongly by its size. In the long time limit
all systems lose the memory of the size and present a
guasi-1D behavior, which is characterized by the power-law
behavior of the displacement. This scenario will be further
elucidated later in Sec. VG.
Next we examine the effect of the bond energgn the

dynamic exponent for a given system sizdl. The (effec-
tive) exponentr is obtained from the simulation up to the
§ timet=10°-1C°. We studied seven systems with sizes rang-
102 - . , . . ] ing from 25 to 2000 and the result is summarized in Fig. 6. It

10" 102 10°  10*  10®  10° clearly shows that there is an evident size and bond energy

! dependence of the interface dynamics. We can divide
FIG. 4. Log-log plot of the mean displaceméhi(t)) as a func-  the bond energy dependence ®finto four characteristic

tion of time't for various system sized= 20, 30, 40, 50, 60, and regimes(a), (b), (c), and(d)—as is exemplified in Fig. 6 for
80 from the bottom to the top. The bond energyis2.0T 4. the system with a sizbl=40.

10* | -

<h(t)>
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FIG. 6. Dependence of the dynamical exponerdn the bond FIG. 8. Dependence of the velocityon the concentration dif-
energye. Curves from bottom to top correspond to system sizesference (0.5-¢). The system size i8l=2000 and the bond ener-
N=25, 30, 40, 50, 70, 80, and 2000. Data are obtained from thejies aree=1.0T,(+), 1.5TA(X), and 2.0 A(*), respectively.

simulations performed up to the time®10 ) ] o o
This regime has been studied in detail in Sec. IV and the

) ] Appendix theoretically and in Sec. V B by the simulation.
(a) Jump regime. The exponentincreases sharply from

the 1D value, 0.51, to unity in a very short range of energy

from 0 to 0.1, . _
(b) Steady-state velocity regime. For moderate bond en- N S€c. VC, we have seen that the properties of the 2D

ergies 0.1T,), the interface moves steadily and its dis- system depend strongly on two parameters: the Biznd

. T . . the bond energy. In the limit of large energy é— =), the
placement grows linearly with time; the exponenis 1. This system loses its 2D features and behaves effectively like its

is quite a surprise since the interface of a 1D chain get§p coynterpart. On the contrary, in the limit of large system
completely pinned at the concentratiors 0.4. The energy ;¢ (N—x), the crystal grows steadily for the concentra-
range wherer remains unity varies with the system size. Thejions c< Co(T) if €>0.1T, (see Fig. 6 folN=2000). Here
larger the system siz#l, the wider the energy range be- the critical concentratiorC, is defined in Eq.4) and as-
comes. _ _ sumes the value 0.5 d=0.5. In the one-phase region, 0
(¢) Transit regime. If the bond strength exceeds the <c<c_ itis found that the steady velocity decreases as the
critical valueec(N), thenv starts to decrease. We defiag  pong energye increasegsee Fig. 8 The ratio of velocities
as the value of the bond energy wherdrops t0 0.9. The 4 1y systems with bond energies and e, is found to be
critical valuee. is found to increase linearly with the system 5;most independent of the concentration when the bond en-

sizeN, as is shown in Fig. 7. ergy is larger than=T,, while T, is the high-temperature
(d) Pinned regime. For a strong enough bond enesgy |imit of the two-phase region at=0 (Fig. 1). In other
the exponentr eventually approaches the 1D value 0.51.\ords the ratio is a function ofe; and e, as

D. Depinning of large systems

v(ey,c)lv(ey,c)=1(eq,€5). However, for small bond ener-
3 . T T gies the ratio depends also on the concentration. So far, we
know of no theory on the velocity in the one-phase region in
two dimensions.
25 s Our concern hereafter in this section is the growth law in
the two-phase region. How does the growth rate depend on
the driving forceHxCy—c for a very large system in the
, two-phase region? Figure 8 shows the simulation results of
& the velocity of the solidification front as a function of the
+ driving force Hx<0.5—c for a large system with sizé\
=2000. Three different bond energies are conside¢€tl;
# =1.0, 1.5, and 2.0. The simulation has been performed only
once for each parameter set, but statistics are sufficiently
good due to the large system size.
s Figure 8 clearly shows that the velocity of the front in-
05 ! L L creases systematically with the driving forek We study
20 40 N 60 80 the interface motion under a small driving foréein the
spirit of a driven elastic manifolffl5—18. Our picture of the
FIG. 7. Dependence of critical bond energy on the system interface motion is as follows. In the absence of an external
sizeN. driving forceH=0 orc=C,=0.5, the interface moves until
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450 F ' ] force and is proportional to the quanti¢y; f;). For the in-

terface to pass over this region, it has to pay the energy
400 W penalty
30 [N u~A(hD)Y2 (49
300 M However, the interface deformation depletes surface energy
. and therefore the jump gains the surface energy
M h 2
200 M USN'Y(I_) l (50)
150 TS N )
wherev is the surface tension. If there is a bulk driving force
100 W% H, the solidification of the voluméil leads to the energy

gain

50 L
0 1 (;(00 2000

ug~Hhl. (51)

FIG. 9. Time evolution of an interface profile of a 2D system By assuming that the jump takes place when all the com-
under a small driving force: 0:5c=0.08. The system size N peting energies are of the same Orderu@g u,~Ug, the
=2000 and the bond energyés-2.0T, . Note that the vertical and  pinning region to be jumped over has the following charac-

horizontal scales are different. teristic length scales:
it finds a configuration with a local minimum of the energy, |~ y™A2RH, h~A%HyY (52
whereupon it is pinned. If we drive a system with a nonzero

force and the characteristic energy

H=b(0.5-c), (48) u=dA?/H, (53)

whered is some constant of order unity. Assigning this to be
the interface tends to move in the direction téf but the  the height of the energy barrier over which the interface has
pinning force of the impurities tends to block the motion. to jump, the waiting time for the interface is estimated as
Hereb is a constant. As soon as the pinning force is overt,~e"T. The velocity of the interface is simply the inverse
come by the external fordd and the restoring force gener- of the waiting time, and can be expressed as
ated by the local curvature of the interface, the interface
begins to move with a finite velocity. For a very small field gex;{ —dA?

v=

H the motion may not be uniform. At a given instant the AT | (54)

interface may consist of pinned and unpinned regions. The
height difference between the pinned and unpinned regiowhereg is a prefactor. Thus for small driving the velocity
increases in time, and thus the interface should be randomly is expected to be exponentially decreasing with'. In
corrugated with large amplitudes. Typical interface profilesorder to check this, we take the logarithm of both sides of the
are shown in Fig. 9. The eye can readily recognize that thérmula(54) and by using the relation E¢48) we obtain the
roughness increases in time. But once the combined effect ¢@&lation
the driving and restoring forces overcomes the pinning
forces in some pinned region, the interface jumps over the
pinning sites and begins to move until it is stopped again by (0.5-¢)In(v) = = £ +(0.5-¢)In(g). (55)
another region of strong pinning sites. Thus the interface
exhibits a slow, smooth motion stopped by pinning. AfterAs the driving force (0.5 c) approaches zero, the value of
waiting times which are typically long in comparison with (0.5-c)In(v) decreases linearly and reaches the value
the time to move from one pinned state to the next, the-dA2/bT atH=0. The linear law is verified by the numeri-
interface jumps over the pinning center and then moves oBal simulation as is shown in Fig. 10. For three different
continuously until the next stop at a pinning site. The inter-hond energieg/To=1, 1.5, and 2, data points behave lin-
face velocityv thus is expected to be inversely proportional early in the vicinity of zero driving force and all linearly
to the waiting timet,, for a jump. fitted lines cut they axis at the point0.192 atH=0. Since
We now estimate this waiting timg,. The randomly the temperature iST=0.5, sodA?/b is estimated about
guenched atom on the sité corresponds to a pinning cen- 0.096.
ter against the solidification front with a pinning forée. We shall now estimate the constanand the strength of
Let us consider the case that the interface has to jump overtae pinning forceA. One starts from the analysis of the free
pinning region with an extensiohand a height. This re-  energy of a binary lattice system without concentration fluc-
gion pins the solidification front because it has mBratoms  tuation. By solidifyingM = hl atoms, the free-energy gain is
than the expected average value and the liquid phase is fgritten as

vored with an energy gain- A(hl)Y2 HereA is a prefactor
characterizing the effective strength of the random pinning Ug=—M[Aup(1—cC)+Augc]. (56

AZ
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FIG. 10. Dependence of (0-5)In(v), the normalized velocity,
on the concentration difference (6:8). The parameters ari
=2000 ande=1.0TA(X), 1.5TA(*), and 2.0T5(+), respectively.

FIG. 11. Dependence of interface velocityn the bond energy
€. The parameters afé=2000,T=0.5,c=0.4. Simulation is per-
formed up to the time 10

The two terms on the RHS of the above equation represent
the free-energy gain by solidification &f and B atoms, re-
spectively. Allowing for the local concentration fluctuations,
we can write the total free-energy gain as

M A=0.8Jc(1—c). (63)

u= —; [Aua(l—ci)+AugCi]

H=0.80.5-c) (62

and the strength of the random field as

At the mean concentratiorc= 0.5, the driving forceH
— — becomes zero and the strength of the random fadrcee-
~—=M{Apa[1-(cEtAc)]+Aug(ctAc)} comes 0.4. From the expressiq6g) and(48), we obtain the
__ s B prefactorb as 0.8. FromA=0.4, b=0.8, and the estimate

MH=MAC(Aug=Ana)- (57) dA2/b~0.096 obtained by the simulatiod js determined as

~ : el 0.48, of order unity as expected.
Here Ac is the concentration fluctuatiom\c=\{((Ac)?), . y L
and is estimated as follows. Since the probab'ﬂi(j%l ,m; éf It is worth mentioning that the driving forcd use_d here
finding m B atoms in theM sites obeys the binomial distri- S twice that off used in the RFI mode(16): H=2f. The

bution factor 2 results from the fact that the energy gain ig 2
when atoms change states from liquid to solid, or in terms of
M! . M the RFI model, spins flip from downwards; & —1) to up-
p(M,m)=mc (1-0)" ™, (58)  wards =+1).
the mean value ofn is {(m)=Mc and its mean-square fluc- E. The effect of the bond energy on the velocity
tuation is

Obviously, the larger the bond energy is, the more diffi-

_ 2\ _ _ cult it is for the interface to move. Figures 8 and 10 clearly
{((m=Mc)%)=Mc(1-c). (59 show this tendency. For a systematic study of ¢éhdepen-
Then dence of the velocity, we fix the concentratios 0.4 and
vary e. Figure 11 shows the result for the system dite

1 =2000 andT=0.5. From the figure we can see that the
Ac= E_C — c( _C)_ (60) velocity decays with increasing the energy Generally we
M M cannot formulate the velocity as a functioneyfbut for large

energy things become simple. For large energy the interface

Substituting the expressio80) into formula(57) and using  is almost flat, but since the system size is large enough, still
the parameterb o/ To=Lg/Tg=1T,=0.9, Tg=0.1, andT  a few kinks are always excited thermally. The density of

=0.5, the free-energy gain is expressed as follows: those thermally excited kinks is proportional to exf(T)
and they act as a solidification center. With increasing en-
u=-0.8M(0.5— c)io,s\/ﬁx/c(l—c), (61) ergy the difficulty of creating a kink increases as well and

therefore fewer kinks exist. Because the propagation of a
Notifying thatM = hl, the first term on the RHS corresponds kink along the interface is much faster than creating it, we
to the bulk driving energyy, Eq.(51), and the second term can safely predict that the velocity decays in the same man-
corresponds to the random field contribution, Eq. (49). ner as the number of kinks:~exp(—€/T). Figure 12 shows
Then the driving field is identified as the data of Fig. 11 in a semilogarithmic way. The data in the



PRE 59 CREEP MOTION OF A SOLIDIFICATION FRONT INA . .. 523

-25 T T T T H CO_C
\\ y~ — = . (65)
3+ \\ _ HC CO_CS
+ 5\
35 F N - Here H. is the critical driving force which separates the
4«\+ moving interface(when H>H_) from the pinned interface
-4 F . (when H<H,) for a one-dimensional diffusionless disor-

\ dered alloy system. The above formygb) shows a linear
. dependence of on c. The suitability of this approximation
% (65) can be verified by Fig. 2, where the solid line shows an
¥ approximately linear decrease pffrom 1 atc=Cg to 0 at
55 % c=C, in the solid side of the two-phase region.
R As the small bond energy is introduced, the atoms in dif-
6 F + - ferent columns start to affect each other. The bond energy
plays the role of an extra driving force which always tries to
6.5 . L : L make the pinned atomic column catch up with its two neigh-
e/T boring advancing columns. As a result, when the pinned
atom solidifies, the system gets energy gain not only from
FIG. 12. Logarithm of the velocity I versus the bond energy the driving forceb(Cy—c) but also from the bond @ with
e/T. The fitting line has a slope around 1.06. its two neighboring atoms. According to E@5), » can be
now approximately written as

In(v)
\
~
3
1
teg
1

large €/T range can be fitted by a straight line with slope
around unity, which agrees quite well with the prediction. H  b(Co—c)+26/T
This argument is not applicable for smallbecause multi- y~ — = 0 A_ (66)
kinks exist on the interface. He b(Co—Cs)

Combining the above argument with the result E¢f) in _ .
the preceding subsection, we get the velocity of the solidifi-1NiS formula shows a linear dependencevain e. Roughly
cation front for an infinite system with large bond energy SPeaking, this is what we have seen in the jump regime of

under very small driving forceqbeing in the vicinity of 0.5  F19- 6. Because of the extra driving force,he real exter-
as nal driving forceb(Cy—c) required to keep the interface

steadily moving becomes smaller than tha{C,—C,)] in
g~ dAZHT. (64)  the zeroe case. In other words, even fo{Co—C)<H. or
c>Cq, it is still possible that the interface moves steadily
From Fig. 10 we estimate the constant valueaafround 1.5 provided thate is bigger than a critical valug™, which
andd~0.5 as estimated in Sec. VD. satisfies the condition/(e*)=1. In the case studied here
Some comments may be necessary concerning a smgk=0.4, b=0.8, C;=0.31, and Cy=0.5), € is about
system. As is shown in the Appendix, explicitly the veloci- 0.04T 4 from the formula(66) by letting v=1. The value of
ties of small systems are proportional to ex@e/T) for e €* is measured from the simulation at aroundTQ, 1see Fig.
=¢=e€. This is due to the fact that the creation of an initial 6). This means that the interface gets pinned waere* but
nucleus is required in these small systems, because thet@pinned where>€* in the two-phase region of the equi-
exists usually no kinks at all at sufficiently large bond energylibrium phase diagram for very smadl In addition,e* var-

v=ae T

and low enough temperature. ies with the concentration and the temperature. Note that this
argument applies only to the very smafl case where such
F. Very small bond energy regime an interface structure of a single pinned atomic column sur-

rounded by two much advanced columns could exist &ind

For very small but nonzero bond energy/T,<1), . .
y gy/Ta<<1) can be considered as a perturbation.

namely the jump regiméa) of the two-phase region in Fig.
6, the interface is pinned and therefore does not have a
steady-state velocity. The fact that the exponeimcreases G. Correlation function

from the value 0.51 of a 1D system to 1.0 whers around In Sec. V C we have observed that the interface displace-
0.1T,, reveals that the 2D effect on the system gets strongefent for a finite system crosses over from the depinned to
as e increases. Pinning for small bond energyan be un-  the pinned state as time proceeds. When does the system
derstood by the following picture: treat the very small energyyndergo a depinning-pinning transition? What is the mecha-
€ as a perturbation for the zewoease. In the absence of the pjsm that leads to the transition? To answer these questions,
bond energy, there exists no correlation between neighboringe must discuss the development of correlations in the sys-
atomic columns in the 2D system and it becomes simply gem Different sites of the interface are not completely inde-
pile of 1D chains. Once an atom is pinned, it will stay in the pendent, but their height and kink structure depends upon the

pinned state until becoming excited into the unpinned stat@eights of the neighboring sites. Figure 13 shows the spatial
by the external driving forcéi and it gets no help from its ¢grrelation function

neighbors. Therefore, the interface is rather corrugated and

interspersed with many ditches withBaatom sitting at the G(x,t)=(h(x",1)2) = (h(x",t)h(X' +Xx,1)) (67)
bottom. The dynamic exponemtcan be approximately ex-

pressed as at various times.
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FIG. 15. Time evolution of the width of the interfaedt). The

FIG. 13. Time variation of the space correlation function up to
the time 16. The simulation parameters ale=2000,¢=0.4,T  curveo(t)~tY3is just to guide the eyes.

=0.5,e=1.5T,. Data are averaged for 50 independent runs.
o~N%% as can be read off Fig. 13. Figure 15 shows the

interface widtho(t) as a function of time. At time 1,

Herex’ andx+x' are two different lattice sites, ar{el -)
o(t) is about 20, which is at least less than 1/15 of the width

means the average over all sitédskeeping the separation

fixed. It is apparent in Fig. 13 that at a fixed time the corre- ) : . X

lation function increases with the separatiobut saturates ©Of the interface in a 1D system with the same concentration
(c=0.4) [4]. The thin interface width in the 2D system is

for x larger than the correlation length,: The correlation ! - -
extends up ta;, but two points on the interface separated bydue to the surface tension which tends to keep the interface

more than;, are uncorrelated. As time proceeds, the corre2s flat as possible.

lation length¢, increases with time, as is shown in Fig. 14.  The pinning-depinning crossover phenomena can be un-

The fitting curveg,,~t3is drawn just as a guide to the eyes. derstood in terms of the correlation length and the finite size
of the system. From the simulation of a rather large system

N=2000, we know how the correlation develops as time

proceeds, as shown in Fig. 14. For systems with small sizes

the correlation should extend similarly. Therefore the time

For x> ¢, the correlation of the interface E¢67) at two
points is lost and the averagé(x’)h(x+x’)) can be de-

coupled as
lim G(x,t)=(h(t)?)—(h(t))?=o*(1). (68 dependence of the velocity can be related to §hedepen-
X dence of the velocity, as shown in Fig. 16. It contains the
information of four different system sizes. At the very begin-

ning the interface is not affected by the system size and all
systems behave in the same way. This corresponds to the

The saturation value of the correlation function in the
common slope {0.0263) of the initial part of the curves in

limit of large separatiorx is equal to the variance?(t) of
the interface position(t). Note, however, that the width of
the interface at long times scales with the system size is

T T T 0.03 T T
200 |- e i
e 0.025
f;‘,’
/"t//‘q—
150 | N - 0.02
o5 e > 0015
100 % i
0.01
50 [/ .
t 0.005
+
+
0 -| 1 |_ 0 1 L
0 5x10* 10° 0 100 200
t &

FIG. 14. Correlation lengtl;, versus the timé. The simulation
is performed with the system sidé&=2000,e=1.5T,, T=0.5, and

c=0.4. The curvet,~tY3is just a guide for the eyes.

bottom to the top, respectively.

FIG. 16. The velocity of the interface versus the correlation
length&;, . The system sizes aié=10, 25, 40, and 2000 from the
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Fig. 5. As time passes and when the correlation length apalong the interface increases very slowly with time, Fig. 14.
proaches the system size, the interface starts to slow dowlfit reaches the system si2¢ the whole interface becomes
and eventually the velocity becomes zero. This crossovetorrelated and the interface asymptotically behaves like the
from depinning to pinning takes place later if the system sizeone in a one-dimensional system, but as long as the system
becomes larger. For a very large systel=2000), &, re-  size is larger thag,, the thermal creep wins over the pinning
mains much smaller thaN and the interface stays in the force. Thus for the system studied here the lints>o and
depinned state with a steady-state velocity. t—oo are not interchangeable.
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v(e,c)="f1(e)f,(c) when the bond energy is not very
small. As far as we know, there is no theory on thiandc
dependence af so far.

In the two-phase region, the interface shows a compli- Here we give closed-form expressions for the elementary
cated behavior depending upon the system Bizthe bond  |ayer-jump frequencie® , _ introduced in Sec. IV, valid for
energye, and the simulation time For a finite-sized system small values of the system si¢ For small enoughN we
under finite simulation timéup tot=10°-1C), the growth  can analytically solve Eq(35). For infinitely large bond-
exponentr depends strongly oe (see Fig. & ing energies,e; and ¢, the transition frequencies have
large differences w.i(1)=w-; expleg/T)>w+i>wi(3)
=w.ieXp(—€/T). Then the closed analytical form &1,
introduced in Sec. IV is obtained fdd=2, 3, and 4 from
Egs.(29), (35), and(36). ForN=2,

APPENDIX

rv<l for e<0.1T,,
v=1 for 0.1ITy<e<e.(N),
<1 for e>e€.(N),
v e>e:(N) o 1 ) 1
v=v(1D) for e—x. OO T Dt e (1) o (D te 1)
A

Unlike the one-dimensional system, the two-dimensional
system can realize a steady growth also in the two-phasgor N=3,
region[0.1Tp<e<e.(N)]. However, whene>e.(N), the
interface becomes pinned such that the spatial disorder of the exf — (es+ €)/T]
alloy leads to a decay of the interface velocity. In the large Q= o o 010 1(0 20 3T 0_20,3)
energy limit (e—), theoretical analysis and computer T3
simulations show that the exponenthas the same value as twir0_s(Wiiw_3tw_1wi3)
its one-dimensional counterpar{1D).

A peculiar result occurs for small but nonzero bond ener- T30 3(w 10 e j0.,)] (A2)
gies, less than about O}, as discussed in Sec. VF. Here
pinning occurs as would be the case for vanishing bond enFor N=4,
ergy but the exponent is increased above the value of the
one-dimensional casev{&0.51). Therefore both for very exd —(es+ €)/T]
large and very small bond energy in a finite system, the 0, 4
interface will be pinned. Note, however, that the latter result H w_;
applies only to models of SOS type and probably not to i=1
systems with overhangs. 4

For a very large systemN— ) with a finite bond en-
ergy, the simulation reveals that the interface always moves
steadily within a finite simulation time that means for the
critical bond energy. (N—o)—c. This corresponds to the X(“’+<i+2)+“’+(i+3>)(“’—i+w—<i+l>) . (A3)
thermal creep motion. We found that the influences of the Wi+t Otz T O iTO_(41)
bond energye and the driving forceH on the velocityv of
the interface growth are decoupled as indicated in(64..  The expressions fof)_ can be obtained from the corre-
The velocityv decays exponentially wite andH~* in the  sponding ones fof), by replacingw , ; with o _; and vice
vicinity of zeroH and for sufficiently largee. versa, wherg stands here for any index in EGA3).

In addition, we have also studied the development of cor- The solidification velocityy , can also be calculated ex-
relations along the interface and their relevance to finite-sizelicitly as follows.
effects on the interface dynamics. The correlation lerfgth ForN=1,

XiZl W40y (j+1)O—(i+2)O—(i+3)
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_e—s|/T(1 S e(q eS/T)/( ¢ ) (A4)

w+A Wipg

ForN=2,
(1-¢)?
(1 SZ)/| (w Ae5|/T+w ees/T)
w+A
2¢(1—c e5|/T+ 3 eeS/T e€|/T+ 3 eES/T CZ
( ) (wp w_p )(w.ip w_ A ) (w+Be€"T+w,Be€S/T) _ (A5)
(ORYNORS:} (w+A+w+Qeq”+(w,A+w,Qe%” ZwiB
For N=3,
v, (eS+E|)/T 1— §>)/{
6w+A
—_ )2 _ 2 3
3(1 C) C(I),A(D,B " 3(1 C)C W_p0W_p C w_pg (A6)
20 A0 p0 gt 0 g0 ptwipw_p) 20.g(0 a0 ptoigo_aAToa0_n) 60,
ForN=4,
_ w_pl®iato_a) —AW_g
+=€ (ES“')/T(l_Si)/ |(1_C)4 +3 +(1-¢)® C—
8wia w+A
(wipatoiplo_g (w_pto_plwig 71+202(1—c)2w7Awa/ WiAW_B
20_ptwiptwig 20atw ptw_p ®ip® gl O At o g
(w+A+w+B)(w—A+w—B)+ W_pA01p )_1 c(1-¢)? w_aw_g(watw_atw gt o_p)
wiptw_patwigtow_g wipatw_p 2 0 a0 (0 aT01p)(0-_at@_p)
2@ a0 [ (wiptwiglo p (0 ptw ploa |t o pglogto p)
+(1-c)c > +c 3 (A7)
05 loiatwigt20_ 5 0_p+20 pto_g 8wlg

HereS, is defined in Eq(41). We should note that the result fbr=1 in Eq. (A4) differs from the usual result, E@3),
for the pure one-dimensional system by the presence of the exponential factors. This difference is due to the periodic boundary
condition.

The analytical result of the velocity, is compared with numerical simulation results explicitly for the case with system
sizeN=4 in Sec. IV B. We have also checked the results for smaller systems and found good agreement, within 1%.

In Sec. IV, we found that the 2D system with a large bond energy is effectively a one-dimensional system with the
transition rateX), and)_. Then we can use some additional results for a real one-dimensional system. For example,
following the procedure of Ref2] we can derive the expressial({X(M}) for the probability of finding a configuration
{XMr={x{M---X{M} in the nth layer from the steadily growing interface:

N

WEX™Y) =[] cxm for n<—1,inthe solid,
=1

and

N

(n) —_gN
W({x<“>})=_]jl cx§n>{1+s'i“ £-({x7) 175

— -1+
Q. ({X"} Q {XMH(1Q )

From Eq.(A8) one can calculate the average concentratioB afoms,c(n), in thenth layer from the interface, by fixing the
configuration of one lattice site, say 1, to aB atom (X(l"):B), and by the summingV({X(}) over all possible configu-
rations {X™M}={B,X{"---X{"}. For example, when the initial concentrationds-Cg, whereS, =1 and the steady-state
velocity v, =0, c(n) is obtained as

)] for n=0, inthe liquid. (A8)

Cs for n<—1,
(n)—| (A9)

|c.  for n=0.

Both phases have the equilibrium compositions, as one finds in the case of the real one-dimensiongRgystem
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